‘e o* inghialljl

& DARALMANDUMAH

Aipa s La Ll o cig B2 sy T

Automatic Generation of Descriptive Summary for Source Code Artifact Ulgusll

Wadlue solol «wglal

osaannndyl algoll

(WO yiao)doxo (sdlao dlo> ton> Gusléo

2016 NIV IF TR |

g0 :&990

1-86 1ol=aall

951089 :MD 8,

ol JSlw, ' Sgizall g9

English :axlll

> bo allw, 1auolell ax)all

&@ao asol> rasol=l

el wlwl)adl ésloc radsdl

ws,VI gl

Dissertations 10logleoll aclgd

ENWILTE TSV UICILVE Y SVIRIG FE S SW L UWATY. S ‘&aolgo
https://search.mandumah.com/Record/951089 ol

) ‘ cabgazo Jgixll gro .aoghinll > 2019 ©
plaziwlW 8slall 0ds dclb ol Juozi dhiSoy abbga=o ,uindl Jgi> grox Ol lode il si> Llol go g8sadl SVl (sle sy a>lio 85lodl 0in
_,|> 9|),ou| JQD wlxol o @b Cu i V9> (Es\Jg):LSJ\” _1,4).9J| 9| C.J),IJW 8§|9_o JI.o) Qng sl peiel)_ou| 9| Jnga.” 9| é.w.i.” &ioug Jnsd M».L”
oglaioll

www.manaraa.com

https://search.mandumah.com/Record/951089

Chapter 1
Introduction

Overview

Keeping up with an enormous amount of source code that you need to
read and understand and the lack of summary commits that are made by
programmers, are the main challenges faced by today's developers. So in
order to help developers deal with this problem and in order to reduce the
cost, one solution is to use a simple text description, or simple graphical
representation view of the source code features that developers can easily
understand. This can also help developers to understand and validate
changes, trace changes to other software artifacts, and locate and re (assign)
bug reports.

In fact, automatic summarization is one of the oldest research areas
dating back to the late 1950s, which is noted in all programming languages
starting from FORTRAN that have provided a facility to write comments.
However, in recent years there has been an increasing attention to this field
from academia, government and industry. The reason is the rapid growth of
accessible information resources, mostly the World Wide Web, which has
resulted in a well-known problem of information overload (Mani, 1999).
The need for automated source code summary represents a main source for
system documentation and it is the core for source code understanding with
respect to maintenance, development and reducing reuse cost.

Software systems are developed in a number of different phases. The
first stage is the analysis of requirements followed by the design of the
system in order to meet the requirements. The next step involves writing
code in a programming language to implement the design specifications.
Finally, the system is tested before it is released for use by an end user.
Once the product has been shipped, the system enters a phase known as
maintenance. Software maintenance is one of the most time and effort
consuming. In software engineering, it means the modification of a
software product after delivery to correct faults, in order to improve the
performance or other features (Eddy, 2013). Developers during
maintenance need quick understand to the source code entities such as
(packages, classes or methods), since they cannot read the entire code of
large systems. So the identifying will occur efficiently and then they just
focus on the ones related to the task at hand. And since the most common
two activities to deal with software systems are searching and browsing,
the source code with thousands or millions lines of code, source code
documentation becomes important.

Also, modifications source code documentation takes place, which
are often documented with long messages. Those messages are a key

www.manaraa.com

component of software maintenance; they can help developers locate and
triage defects, validate changes, and understand modifications (Haiduc,
2010, & Haiduc S. J., 2010). In maintenance stage software change may
occur, so it affects another part of the source code. This requires spending
more effort and time from developers to find the affected lines of the
source code in order to understand the software.

Software changes are the basic and essential building blocks and
characteristic of software evolution in software development since the
software systems must respond to evolving platforms, requirements, and
other environmental pressures, and after the first version has shipped the
software continues to evolve, software evolution offers a different point of
view on the traditional about software maintenance: it indicates the idea of
essential change within an environment (Godfrey, 2008). Software
evolution appeared as an unexpected and unplanned phenomenon that was
observed in the original case study, in the evolution step, developers add
new features, correct previous mistakes and misunderstandings, and react
to the requirements, technologies, and knowledge volatility as it plays out
through time. And each change introduces a new feature or some other new
properties into software. During evolution, the programmers must
comprehend the existing program to be able to add new functionalities or
new properties to it (Rajlich, 2014).

In software development, similar problems are solved again and again,
so the best career is not to repeat solving of what has been already solved.
The best solution here is to reuse the same solution. Software reuse is the
use of software knowledge or the existing software in order to build new
software. It is also means the reuse of the code (Frakes, 2005). The
importance of software reuse comes because the need to reduce effort in
software maintenance and development. It also improves the quality of
software and decreases time to market (Poulin, 1993). So a good software
reuse process facilitates the increase of productivity, reliability, quality, and
the decrease of costs and implementation Time. Software systems and
components are specific reusable entities, mathematical function or an
object class. According to (Selby, 2005) found that a set of programs
consist of 32% reused code (not including libraries), so in order to reuse the
existing software it is important to understand and document source code.

Software comprehension is the main activity that simplifies
maintenance, reuse, code understanding and many other activities in
software engineering. (Storey, 2005), so the summary can be one of the
techniques that simplify software comprehension , which produce a text
that contains a large amount of the information, contained in the original
text, and do not exceed half of the original text. Program-comprehension
can be categorized into three models: top-down models, bottom-up models,
and integrated models. Comprehension according to the top-down model is

2

www.manaraa.com

working on deriving and formulating hypotheses about program purpose
while ignoring details, in order to evaluate them by the developers. Bottom-
up comprehension describes how a program is understood when a
programmer doesn’t have a knowledge about a program’s domain, here the
programmer checks the statements of a program and groups them into
semantic chunks. This then can be combined further until the developer has
an understanding of the general purpose of a program. The third model is
the integrated models combine top-down and bottom-up program
comprehension.

The developer typically uses top-down comprehension ever possible.
If a programmer has some knowledge about the domain, he/she will start
with top-down comprehension. When he encounters code fragments he/she
cannot explain using his domain knowledge, he/she will switch to the
bottom-up comprehension (Feigenspan, 2011). A better code understanding
by programmers and what is most efficient and effective can lead to many
kinds of improvements such as better tools, better maintenance processes
and guidelines, and documentation that support the cognitive process.

Static analysis i1s one of the most important areas that focus on
understanding the source code; it has the ability to analyze large amounts
of source code in considerably shorter amount of time than a human could.
Static analysis aims to statically test the text of a program, without
attempting to execute it; static analysis tools generate a first pass of the
code base and highlight areas that require more attention from a senior
developer.

Software metrics are one of the important aspects of software
engineering. Which acts as an indicator for software attribute. It also plays
an important role in the management of software projects. Software metric
is defined in the IEEE 1061 standard as a function that has an input
software data, and the output from these data is a single numerical value,
that can be explained as the degree to which software possesses a given
attribute that affects its quality. The goal is gaining objective, quantifiable
measurements and reproducible, which may have valuable applications in
budget planning, cost estimation, software debugging, quality assurance
testing, and optimizing personnel task assignments, so analyzing software
metric provide another way to understand the software from the produced
numerical value.

1.1 Source Code Summarization:

Source code, is a description of a computer program which can be
textual, readable, human readable, static, and fully executable that can be
compiled automatically into an executable form (Binkley, 2007). Source
code also can be defined as a mixed artifact that contains information that
enables the communication between the developers and the compiler. So

3

www.manaraa.com

the Automatic Source code summarization is the process of producing an
illustrative subset of the data, with a computer program that contains an
information of the entire source code. So in order to summarize the source
code there is a need to understand the source code.

When any software product has been developed, not only the
executable file or the source code is developed, but also a different kind of
documents are developed as a part of software engineering process such as
software requirement document, design document, test document, etc.
Good documents are very useful and they serve many purposes. The
documents that are produced in order to understand the source code may
be included within the source code, so here the software or the source code
have an Internal Documentation, or included outside the source code which
is called external documentation, where programmers keep their notes and
explanations in a separate document. For software developers, external
documentation is useful as it consists of information that describes the
problems with the program in order to solve them, or it can also focus on
documenting general description of the software code without being
concerned with its detail written. The main aim from external
documentation is to provide easy views for software code.

The Internal documentation which is explained by comments, these
block of comment for the Java and C/C++ programming language, can be
categorized in the following seven different types (Steidl, 2013):

1- Copyright comments: this type of comments is usually found at the
beginning of each file, it includes information about the license or
the copyright of the source code file.

2- Header comments: In Java, headers they found after the imports but
before the class declaration, it gives an overview about the
functionality of the class and provides information about, e. g., the
class author, the peer review status, or the revision number.

Member comments: they provide information for projects and for

API the developer. It describes the functionality of a method, being

located either before or in the same line as the member definition.

Inline comments: describe implementation decisions used within a

method body.

Section comments address several methods/fields together belonging

to the same functional aspect.

6- Code comments: this kind of comments is temporarily commented
for potential later reuse or debugging purposes.

7- Task comments: are developer notes containing a remaining to do, a
remark about an implementation hack, or a note about a bug that
needs to be fixed.

I

+

7

www.manaraa.com

1.2 Aims and the importance of this study

Software comprehension is an important field in the software
engineering; it is the core for many other activities such as reuse,
maintenance, development, and software changes. This requires software
engineers to spend a lot of time and effort to analyze and understand the
software. So summarizing software artifacts is the best solution that helps
the developer, maintainer, or any other one who aims to understand the
software.

Many of the previous researchers focus on summarizing source code
artifacts. So the commit produced from summarizing the source code just
provides summary information about part of the software, and doesn’t
cover the overall software. They either provide a summary that describes
the context of the artifact or they describe the semantic behind the class or
the method, by analyzing the stereotype.

From here the importance of this research comes, so it aims to give a
number of external descriptive views that summarize all the granularity
levels of the software (i.e.: method, class and the package) by providing a
general description that describes a quantity information for each artifact in
the software, and more detailed description that provide semantic
information that the syntax of each artifact holds for the selected artifact,
which are presented as a set of reports , also the method control flow graph
that views the method with some metrics that aim to measure the method,
and the class call graph which is also supported with the main class metrics
that measures the class quality.

1.3 Thesis claims

This thesis aims to introduce the proposed approach as a substitute
for many other approaches, since it has been used to provide a good
comprehension and understanding to the software engineers in order to
help them in many areas. So it will be easy to develop, maintain, reuse, and
analyze the software by reducing effort and time.

1.4 Contribution of this research

Although there are different ways introduced to understand the
software, automatic program comprehension is the most efficient and
wanted way. Internal and external documentation help during program
understanding and it is also still an important research area.

This research proposes a new approach which aims to summarize the
software system by analyzing the source code statically, in order to
determine its elements to understand the relations between those elements,
by generating a descriptive summary for the target software project.

www.manaraa.com

Since source code contains a lot of text so we parse source code to
xml tags using srcML (source code Markup Language) tool in order to
analyze the source code, because it adds much of the syntactic information
that is found in the Abstract Syntax Tree (Maletic, 2002). It also combines
text with both structural and textual information of the source code and
provide an easy way to extract information from the source code (Collard,
2002). All this makes the software comprehension directly supported, the
main contributions from the proposed work are summarized in the
following points:

e The target software artifacts are packages, classes and methods. And
the generated summaries are hydride of texts, graphs, and
numerical measures.

e The proposed methodology introduces a new approach that aims to
generate the both class call graph and method control flow graph
that represents a view for both class and method.

e There are also some other important contributions which aim at
answering the following research questions:

e Does the generated descriptive summary summarizes, describes, and
identifies the source code artifacts (package, class and method)
automatically?

e Does the generated descriptive summary reflect the developers
understanding of the software?

1.5 Thesis Structure

The remainder of this thesis is organized as follows: Chapter 2
discusses the summarization overview and reviews most of the work in the
field of source code artifact summarization techniques and the source code
comprehension techniques. This chapter consists of reviewing the
methodology of each work, and the results that were achieved and any open
source case study that was used. The source code artifacts descriptive
summary is discussed in Chapter 3 detail how the new method works, with
a number of examples for the generated descriptive summary. Chapter 4
provides the results of the new methodology, conclusion with a summary
of the research conducted and recommendations for future work.

www.manaraa.com

http://www.tcpdf.org

‘e o* inghialljl

& DARALMANDUMAH

Aipa s La Ll o cig B2 sy T

Automatic Generation of Descriptive Summary for Source Code Artifact Ulgusll

Wadlue solol «wglal

osaannndyl algoll

(WO yiao)doxo (sdlao dlo> ton> Gusléo

2016 NIV IF TR |

g0 :&990

1-86 1ol=aall

951089 :MD 8,

ol JSlw, ' Sgizall g9

English :axlll

> bo allw, 1auolell ax)all

&@ao asol> rasol=l

el wlwl)adl ésloc radsdl

ws,VI gl

Dissertations 10logleoll aclgd

ENWILTE TSV UICILVE Y SVIRIG FE S SW L UWATY. S ‘&aolgo
https://search.mandumah.com/Record/951089 ol

) ‘ cabgazo Jgixll gro .aoghinll > 2019 ©
plaziwlW 8slall 0ds dclb ol Juozi dhiSoy abbga=o ,uindl Jgi> grox Ol lode il si> Llol go g8sadl SVl (sle sy a>lio 85lodl 0in
_,|> 9|),ou| JQD wlxol o @b Cu i V9> (Es\Jg):LSJ\” _1,4).9J| 9| C.J),IJW 8§|9_o JI.o) Qng sl peiel)_ou| 9| Jnga.” 9| é.w.i.” &ioug Jnsd M».L”
oglaioll

www.manaraa.com

https://search.mandumah.com/Record/951089

Chapter 2
Review of Literature
Introduction

In order to understand the source code many approaches were
introduced by following many methods and techniques. In general
programmer makes a mental map of the code by looking at and recognizing
various knowledge structures by including specific domain knowledge as
well as recognized structures in the source code. For example, when
programmer wants to understand a while loop in some code he will look
for the end of the loop, the condition to exit the loop and how the condition
is changed, since that is how while loops are structured in general. Then
the mental map of the code used to predict what will happen next in the
code.

As a starting point, simply the summary can be defined as producing a
text from one or more texts or list of sentences produced from one or more
documents that presents the main points in a concise form, which contains
a significant portion of the information in the original text(s), where it is
not longer than half of the original text(s). When this is done by the means
of a computer or automatically, it will be called Automatic Text
Summarization (Lloret, 2008).

2.1 Source Code Artifact

Correia in his work (de Figueiredo Correia, 2015), defines the
software artifacts as both the products of software development and the
things that developers work with. They may be themselves part of the final
set of deliverables to be built; they may describe or support the process of
developing software, and how it unfolds; and they are capable of describing
the function and design of software, and therefore be used in the creation of
other software artifacts.

Also (Juergens, 2011), defines software artifact as a file that is created
and maintained during the life cycle of a software system. It is part of the
system or captures knowledge about it. Examples include requirements
specifications, models and source code. From the point of view of analysis,
an artifact is regarded as a collection of atomic units. For natural language
texts, these units can be words or sentences, for source code tokens or
statements. For data-flow models such as Matlab/Simulink, atomic units
are basic model blocks such as addition or multiplication blocks.

While (Fisher, 2009), defines the software artifact as something
produced during the software development process. The ultimate goal of
the process is to produce an operational program that satisfies user’s needs.
From an end user’s perspective, this working program is the artifact of
primary interest. Customers also need documentation artifacts that tell them
how to use the software. This documentation can include users’ manuals,

7

www.manaraa.com

tutorials, and online program help. The major software engineering artifact
1s source code.

One of the active research topics in software maintenance is
summarizing software artifacts. It can said that the artifacts of a software
system includes sotware code and executable files, they also include a
hirarical diagrams of the software such as UML class diagram. Table 1,
summarizes the kinds of languages and notations that can be used for
different software artifacts.

Table 1:
Languages or notations used for software artifacts
Software Artifact Language or Notation
Requirements English and pictures, in electronic or paper form.
A formal specification language, such as SpecL
Specification where SpecL manages the logic and date

complexity, reporting ambiguities to the user, or
by applying a modeling notation, such as UML.
A structured software documentation format,

Design such as Javadoc, or a modeling notation, such as
UML
A programming language, such as Java or C++,
Implementation and the graphical program diagramming notation

also can apply.

According to Table 1, each phase of software engineering is defined
as an artifact, and for each phase it is possible to represent it as graphical
notation, structured documents, pictures, or programming language such as
C++ or java.

2.2 Software Comprehension

There are different methods to deal with the source code artifacts in
order to understand it.

e Some of them deal with the source code as a text since it contain a
natural language to introduce a document from it, other methods, to
introduce a document deal with the source code as fragments were they
invistigate the artifacts from them.

¢ Some methods aim to find some features.

e On the other hand some comprehension techniques aim to provide
quantities that aim to measure the software quality.

Program comprehension is popular area, the idea in this area
summarize in breaking a large program into more manageable slices or
smaller parts . So, instead of trying to comprehend the program as a whole,
the programmer can try to comprehend these slices. were a slice is a set of

8

www.manaraa.com

statements related by data and control flow. This way can be performed
programmatically and can be useful for debugging of computer programs
and during program comprehension (O’brien, 2003). Table 2, provides a
prife describtion to the methods proposed to comprehence the sotware:

Table 2
Software comprehension

Method Description
Visualization Visualization techniques aims to visualize the
techniques application using graphs, uml diagram or views (Pierre

Caserta, 2011).

Metrics are useful for analysis purposes, it aims to
Metrics trace | measure the software project in order to determine the
techniques complexity, software size and the qulity of the source

code (Sneed, 2006).

Quering techniques provide a mechanisim to extract the
Quering progrm artifacts and the relationship between them. This
techniques will help in visualization or take query results as an input

for further queries and analyses (G"irba, 2008).

It is designed to work with the documents that are
Text retrieval | written in natural language, and since source code
techniques contain natural language, it can be easily applied

Heuristic based
techniques

Dynamic
analysis
techniques

Static analysis
techniques

Fact collection

(McBurney, 2014).

This kind of techniques employed for learning or solving
problem solutions which are good enough for a given set
of data or conditions. It generates a light abstractive
summary to the extracted information from the source
code (Nazara, 2015).

It means the analysis of data gathered from a running
program, it exposes the system’s actual behavior so
provide an accurate picture of a software system. This
technique comprises the analysis of a system’s execution
through interpretation (for example using the Virtual
Machine in Java) (Hamou-Lhadj, 2009).

Is the analysis of computer software without performing
the actual execution of the programs built from that
software, it is usually applied to the analysis performed
with human analysis and by using automated software
tool (Gomes, 2009).

According to this technique developers working in the
source code in order to search, learn, review, implement
and propose facts about the source code in order to serve
numerous roles, such as predicting the amount of

9

www.manaraa.com

additional investigation necessary to make a change,
constraining changes, and suggesting changes (LaToza,

2007).

In order to fix a problem or add an enhancement to the
Feature program, there is a need to locate the code that
locating implements a specific feature of a program (Wilde,
techniques 2003).

Applying mining techniques to the source code in order
Data mining | to get useful knowledge about the design of large legacy

analysis systems. Association rules , or clustring techniques can
techniques be easily applied (Kanellopoulos, 2004), (Tjortjis, 2003).
Source to | In this technique it is look at source code artifact as
source code fragment, so it aims to investigate these artifacts in
summary order to produce a text summary to these artifacts
techniques (Nazara, 2015).

As shown in (Table2), understanding source code occupied a wide
area of research in software engineering. And many techniques proposed to
reach this aim, some of these techniques produce a text summary and some
of them produce a graph or a view, also some of the proposed techniques
are depending on each other for example the query techniques can help in
the visualization.

Measured comprehension, is popular area of software comprehension
research. In this area of software comprehension, research uses graph
theoretic software models and some software metrics to measure the
comprehend ability of programs. One of the best known graph theoretic
metrics which is used is McCabe’s Cyclomatic complexity. This metric can
be used to devise a methodology for structured testing, when a programs
have a higher cyclomatic complexity number this means it should be more
difficult to understand, because they have more control flow branches.

2.3 Source Code Summarization

Several researchers have attempted to reduce the difficulty of software
maintenance, and there are a lot of tools that were built in order to help in
program understanding. Some studies focus on analyzing source code
artifacts statically to introduce a reports as English sentences, or to generate
a view, the generated report, or view summarize one artifact of the source
code .

Some of the proposed generating summaries aims to summarize the
methods, where (Sridhara G. e., 2010), presents a novel technique to
generate a descriptive comments automatically in order to summarize Java
methods intent. This technique focuses on producing comments that should
include the important statements in the code. Given the signature and body

10

www.manaraa.com

of a method, the automatic generator for the comments identifies the
content for the summary and generates natural language text that
summarizes the method’s overall actions. To identify linguistic elements of
the method, this approach applies the Software Word Usage Model.
Accuracy, content adequacy and conciseness where evaluated. It gives a
quick understanding of what a method does.

Also (McBurney, 2014) proposes a tool that generates documents
which summarize the context surrounding a method (the environment in
which the method is invoked), rather than details from the internals of the
method. This work considered as a complement work to (Sridhara G. e.,
2010), in order to improve it, so the focus here on describing the behavior
of a Java method. The output is a set of English sentences describing why
the method exists in the program, how to use the method and what the
methods do internally. In this research also the tool performs a case study
with 12 Java programmers as participants where they show that this work
have more contextual information than the previous work. The author in
(Abid, 2015) proposes an automatic approach that generates natural
language documentation summaries for C++ methods depending on
methods stereotypes and by applying the static analysis and fact extraction
on the method, which at end added as a comment for each method.

The work (Alimucaj, 2009), aims to introduce a view that represent the
method as a control flow graph; this approach depends on the AST.

On the other hand (Moreno, 2013), focus on summarizing the class in
order to automatically generate human readable summaries for Java
classes; these summaries allow developers to understand the main goal and
structure of the class. By conjunction the determined class and method
stereotypes with a set of heuristics. To identify which methods are to be
included in the summary, two filters are applied. Stereotype based filter,
which removes the methods whose stereotypes are not relevant to the class
stereotype according to its definition, and access level filter, which based
on the access level permitted by the modifiers of the methods. After that
the selected information included in the summaries, were the generated
summary use the existing lexicalization tools. This tool use ArgoUML and
aTunes 1.6.0 java open source system in evaluation by selecting 20 classes
per each system. This work evaluates the following properties to the
generated summaries, expressiveness, conciseness and content adequacy.
This shows that this is a starting point for the generation of task specific
summary. According to this work (Moreno, 2013) implements a tool called
JSummarizer that highlights the main functionality of a class depending on
class stereotype. This tool ignores the existing comments, and uses a set of
predefined heuristics to determine the summary information, and it applies
natural language processing and generation techniques to form the
summary in order to understand large and complex classes.

11

www.manaraa.com

(Moreno L. , 2014) proposes an approach to generate a natural
language description to the class of the source code and sets of code
changes, since they are a complex artifact and it will provide a broad and
quick understanding to the software. This approach uses the class
stereotype to describe the structure of the class, and the relevant methods to
describe the behavior of the class. While (Sridhara G. L.-S., 2011)
describes a novel technique to generate comments for Java method
parameters automatically, in order to provide an overview of the role of the
parameter in facilitating the wanted functionality of the method. This
technique integrates the parameter comments with the summary. The
evaluation task of this work depends on nine human evaluators with
programming experience ranging from 4 to20 years, and have software
industry experience ranging from 1 to 7 years to evaluate Accuracy,
Utility-Standalone, Utility-Integrated and Necessity. Another approach
were introduced by (Hammad, 2016), in order to generate a textual
description to the main services provided by java packages, by extracting
the syntactic information from java source code.

The previous static analysis techniques give a descriptive report, while
(Ellina, 2007), and (Myers, 2011), provide class call graph that views the
method invocation within each class.

Many other studies depend on visualizing source code, in order to
understand the software. (Lanza, 2011), uses CodeCity tool to visualize
software elements as a city in 3D view, each package is presented as a city
within this city the building represent the class, the height of the building
represent number of methods within class, and the width of the building
represent number of attributes. While class metrics are shown as a solar
system metaphor (Graham, 2004), whih represents LOCM, class coupling,
inheritance level metrics. Also in (Lanza, M, 2001), software evolution is
visualized using CodeCrawler, each software system is represented as
evolution matrix. Each class in the matrix is represented as rectangle the
width represents number of method, and the height represents the number
of instance variables.

On the other hand (Haiduc S. J., 2013) proposes a novel technique that
automatically generates an extractive summaries for source code entities,
depending on lexical information, this approach is based on using lexical
and structural information from the method in the source code by dealing
each method as a separate document, this is done using Latent Semantic
Indexing (LSI) as the text retrieval (TR) technique, the result this work
show that applying text retrieval (TR) technique gives better results than
applying natural language summarization.

12

www.manaraa.com

2.4 Software Metrics

Metric 1s a measurement that is computed directly from the program
source code, to improve the quality and validity of software systems. Every
system has its own complexity which should be measured to improve the
quality of the system; static metrics are derived from the measurement on
static analysis of the software code (Sonal Chawla, 2013).

In 1994 Shyam R. Chidamber and Chris F. Kemerer in their work
(Chidamber, 1994), aims to measure the class inheritance hierarchy, so they
developed and implemented a new set of software metrics for OO design.
The developed metrics reflect viewpoints of experienced OO software
developers and also based in measurement theory. Those metrics are
summarized below:

e Weighted Methods Per Class (WMC): this metric aims to count the
number of methods per class, it is calculated by the following equation:

WMC = 10X i 1)

Where cx is the complexity for each method (e.g., Cyclomatic

complexity, volume, etc.)

e Depth of Inheritance Tree (DIT): this metric means the maximum
length from a node to the base class or the root.

e Number of children (NOC): this metric aims to find the number of
subclasses that are immediately subordinate to a class.

e Coupling between objects (CBO): it is the number of collaborations
between two classes.

e Response For a Class (RFC) : to calculate RFC the following
equation is used:
REC =201 MCX i e 2)
Where Mcx is the number of methods called in response to a message
that invokes methodMx. So RFC = |RES| where RES is the response set
for the class, given by: RES = {ME}U all x{Rsx} 3)
Where {Ksx} is the set of methods called by method x , and {ME} is the set
of all methods in the class.

e Lack of Cohesion in Methods (LCOM): it is an important concept in
OO programming is Cohesion. It aims to give an indication whether
a class represents multiple abstractions or a single abstraction. The
idea is that class should be refactored into more than one class if it
represents more than one abstraction, each of which represents a
single abstraction. The following equation:

Let X = {(4i, AD|Ai Nn4j=0}and B = {(AL, AD|Ain 4] — 0 “)
Ifall nsets {A1},...{An} are®, then let X = 0.

13

www.manaraa.com

So LOCM = |X| = V] if X[= |Q| .o 5)

In another words we can say that LCOM is coming from subtracting
number of non-empty intersections from the number of null intersections.

On the other hand many other metrics aim to measure the quality
of the method, for example Maurice Howard Halstead (Halstead, 1977),
introduce the Halstead complexity measures metric, Halstead's goal was
to identify measurable relations between software and properties of
them. Several measures can be calculated according to Halstead
complexity, by calculating the following numbers:

e numl : is the total number of distinct operators.
e numZ: is the total number of distinct operands.
o NUML : is the total number of operators.

o NUMZ: is the total number of operands.

The measures that can be calculated according to the previous numbers
are:

Program vocabulary: num = numl + num2 (6)
Program length: NUM = NUM1 + NUM2Zccee.... (7)
Volume: VOL = NUMlog, numcooviiiiiiininn, @®)
Difficulty: DIFF = (“25) « (22) e)
Program effort: EFO =VOL/DIFFccociiiiiiiiin, (10)

In order to understand and analyze the program component and the
relationship between them, and since the graphs are one of the preferred
views for the analysts both call graph and flow graph are important
representations for the software, so in order to represent calling
relationships between functions within the class call graph is used. Call
graphs are used for program analysis and human understanding as a basic
program analysis result. In call graph each node represents a function and
each edge between (f, g) indicates that function f calls function g. and so
on; a cycle in the graph indicates recursive function calls.

Another important representation that is used to represent the function
is the flow graphs, they are useful, and an important tool for testing
programs or program components during software development, control
flow graph (CFG) is a directed graph in which the nodes represent basic
blocks and the edges represent paths between the control flow nodes.

14

www.manaraa.com

(Allen, 1970), used control flow graph as a graphical view in order to
represent the method. According to control graph McCabe’s Cyclomatic
Complexity (CC) can be calculated. McCabe’s Cyclomatic Complexity
(CC) 1s intended to measure the complexity of software by analyzing the
software program’s flow graph, it was introduced in 1976 by Thomas J.
McCabe as shown in (McCabe, 1967), CC was organized to measure the
size of the test case space, and it can be calculated as equation 11 below
show:

CO=ED —ND+ 2 e (11)
Where:
ED: is the total number of edges, andND: is the total number of nodes.

2.5 Representing Source Code as XML

Source code is usually kept as a plain text, because it is easy to
manipulate the plain text using text editor and other software tools. In order
to represent the hierarchal structure for source code, the compiler builds a
tree called the Abstract Syntax Tree (AST), which make it easy to reads
source code, and analyze it (Fujita, 2007). The format of AST and its
contents are great for the compiler but they are greatly lacking with respect
to the need of software engineering. So the well structure of the source
code enables reading, writing code but not explicit describing structure.
The field of document engineering is the common solution for this
problem; this field inserts special tags or characters into the document were
it adds structural information. So the dealing is with text, which makes it
easy to be parsed, searched and transformed with the aid of these tags. The
standard that is used to solve software engineering problems and also
forming documents and information is the Extensible Markup Language
(XML) (Collard, 2002).

Analyzing and manipulating XML by software tools is easy; this
comes from the universal format representation. The World Wide Web
Consortium (W3C) designs the standard Generalized Markup Language
(SGML) which has an important subset called XML. XML document
consists of text marked up with tags enclosed in angle braces. In XML
document the inherent hierarchical structure make it convenient for
representing source code constructs. So representing source code as XML
document have the following benefits (Aguiar, 2004):

1. Explicit code structure: by nature, XML documents are structured,
and can be used to represent the code as a tree , so code generation
and transformation using predefined templates will quickly done.

2. Powerful querying capabilities: modern IDEs usually include
specific tools for source code that allow searching for any of
program artifacts, such as classes, methods, fields, etc. In addition to
textual searches using regular expressions. The features of source

15

www.manaraa.com

code are useful but are only a small subset of what is able to query
with XML standards and tools, such as XPath and XQuery.

3. Extensible representation: extensions are often supported as
Comments because the plain-text source code is not easy to extend
with new code artifacts because they would break down the code
structure and require parser modifications. In a XML document.
Distinct tools can insert and define their own elements in the code
structure and then process only the elements that are relevant for
them.

4. Flexible formatting: In XML representation of code, the structure
can be extracted from the coding style. Re-formatting of source code
is easy because of the XML standards and tools, such as XSLT,
because it allow using different styles in order to enrich its
readability through the suitable usage of layouts, fonts, colors and
links.

5. Cross-referencing: referencing code fragments directly to code
artifacts is possible, thus enabling the relocation of code fragments
without disrupting references. The file position is usually the
reference of the source code fragments in plain text, for example line
and column numbers. On an XML tree like structure of a program.

6. Wide support: XML tools are available in all major systems so it is
completely satisfy the requirement of program representation that it
must be widely supported in a wide variety of platforms.

Many xml representations were introduced to represent java source
code as a document representation. For example JavaML that introduced by
Greg Badros, in 2000 (Badros, 2000), to replace the classical source
representation of Java programs based on XML, JavaML adds the semantic
and structural information to the source code text files, JavaML reflects
directly the structure of the software artifact in the overlapping of elements
in the XML-based syntax.

JavaML 2.0 enriches the original JavaML (Aguiar, 2004) which adds
more information at several levels ranging from the lexical level to the
semantic level to have a full lexical information about tokens, comments
and formatting, small enhancements for structural information, and much
richer semantic information to symbol definitions, references and type
information. The work (Mamas, 2000) Integrated Software Maintenance
Environment (ISME) was introduced in order to represent Source code as
XML DOM trees that offer a higher level of portability and openness than
custom Abstract Syntax Trees.

Another document-oriented XML representation of source code is the
stcML (Collard M. D., 2011) as a single XML document it covers the
source code text and the Abstract Syntax Tree information as a tag. This

16

www.manaraa.com

tool supports the following programming languages, Java, C, and C++. It
aims to provide full access to the source code at the lexical, structural,
documentary, and syntactic levels.

This is supported by the sreML toolkit. SrcML have the ability to
translate over than 7500 Line of Code per second, it also allows users to
perform fact extraction in multiple ways, for example XPath query can be
used to address the wanted facts in the document, and also XPath support
the calculation of numeric results that aims to find the number of
occurrences of elements. SrcML tool can perform two translation the first
is translating source code into the srcML format, and the second is
translating the srcML into source code. There are also many information
can be derived from the srcML such as call graph and dependency graph
(Collard M. L., 2005).According to that The proposed methodology uses
the srcML tool as a parser in order to transform the source code to XML
file.

The powerful expression within XPath query, make it easy to retrieve
relevant information, and parse an xml document. To perform accessing
and manipulating to the xml file there is a need to use the Document Object
Model (DOM) interface. The DOM need because it enables reporting the
information that is found in xml tree nodes.

17

www.manaraa.com

http://www.tcpdf.org

‘e o* inghialljl

& DARALMANDUMAH

Aipa s La Ll o cig B2 sy T

Automatic Generation of Descriptive Summary for Source Code Artifact Ulgusll

Wadlue solol «wglal

osaannndyl algoll

(WO yiao)doxo (sdlao dlo> ton> Gusléo

2016 NIV IF TR |

g0 :&990

1-86 1ol=aall

951089 :MD 8,

ol JSlw, ' Sgizall g9

English :axlll

> bo allw, 1auolell ax)all

&@ao asol> rasol=l

el wlwl)adl ésloc radsdl

ws,VI gl

Dissertations 10logleoll aclgd

ENWILTE TSV UICILVE Y SVIRIG FE S SW L UWATY. S ‘&aolgo
https://search.mandumah.com/Record/951089 ol

) ‘ cabgazo Jgixll gro .aoghinll > 2019 ©
plaziwlW 8slall 0ds dclb ol Juozi dhiSoy abbga=o ,uindl Jgi> grox Ol lode il si> Llol go g8sadl SVl (sle sy a>lio 85lodl 0in
_,|> 9|),ou| JQD wlxol o @b Cu i V9> (Es\Jg):LSJ\” _1,4).9J| 9| C.J),IJW 8§|9_o JI.o) Qng sl peiel)_ou| 9| Jnga.” 9| é.w.i.” &ioug Jnsd M».L”
oglaioll

www.manaraa.com

https://search.mandumah.com/Record/951089

Chapter 3
The Proposed Methodology

Introduction

The proposed methodology aims to summarize the source code for the
software by generating a descriptive summary that contains a set of views
in order to describe the source code artifacts. The generated views involve
analyzing the software source code in order to determine its elements and
the relations between them, and also to calculate many of the important
software metrics automatically to enrich the view information.

In this thesis, static analysis technique is applied on the source code
in order to reach our goal; firstly Java source code of the software is the
input. Then, this source code is parsed into xml file is generated, this
generated file contains all the elements of the source code as xml tags,
which are organized in a hierarchical way, and according to srcML format
a number of features are extracted depending on the xml file tags, that are
statically analyzed which are then used then used in the generated
descriptive summary views.

The generated descriptive summary of the proposed approach
considered to be used and serve in the fields of maintenance, software
understanding, reuse, evolution, changes and reverse engineering, since a
huge amount of the source code needs to be analyzed and understood.

3.1 Proposed Methodology Overview

The proposed methodology aims to extract a number of views in order
to summarize the source code artifacts, this methodology focus on
analyzing the source code statically.

e Firstly the source code is transformed using the srcML tool into xml
format as XML file that represent the source code.

e The parsed XML file is parsed and analyzed where many of XPath
queries are applied to it, these queries depends on the DOM that
describes the xml tree nodes and the relationships between them.

e At the end, the output are number of views that summarized the
software source code artifacts, by focusing on describing the features
of the following artifacts: packages, classes, and methods:

1- Package report.

2- Class report that contains a set of services shaping the main role
of the class within the package

3- Class call graph supported with main class metrics that measure
the quality of the class and quantity information such as total
number of methods, and total number of attributes.

4- Method control flow graph that is supported with the Cyclomatic
complexity and Hallstead complexity measures.

18

www.manaraa.com

e The proposed methodology ignores the interface classes from
summary since it groups the empty bodies’ method to each other. It
also i1gnores the summarization of constructors since they are used to
initialize data fields.

This methodology consists of a number of processes to reach the
goal of generating descriptive summaries for the source code artifacts.

Figure 1 shows the main processes in the proposed approach.

Software XML
Project file

@age features extractoD @S features extraD

Package Class

report report

Class Call
Graph

Class call graph

Visualizer
Method
Method control flow
CFG graph Visualizer

Figure 1
Proposed Methodology Overview

As shown in Figure 1, the proposed methodology consists of the

following steps:
1- Project source code is parsed into XML file using srcML tool,

which is generated as xml file.
2- Static analysis technique is applied in order to extract a number of

features.
3- Two main extractors are applied to the xml file, where they provide

a list of features.
4-The mined features provide us with two main reports, package

report, and class report.
5-The class report is used with the XML file to pass a visualizer in

order to provide us with class call graph, and the method control

19

www.manaraa.com

flow graph. The following sub-sections describe in details each step
in the proposed methodology.

3.2 SrcML tool

SrcML tool in this methodology is used to transform project source
code into xml file that have the srcML tool format. Figure 2, provides an
example of a Java class that is transformed into XML file using the srcML
tool as shown in Figure 3. The following command generates an XML file
named FiglnspectorPanel from the class FiglnspectorPanel.java:
src2srcml.exe --language=Java FiglnspectorPanel.java -0
FiglnspectorPanel. xml.

1 package org.argouml.dev.figinspector;
2 import java.awt.BorderLayout;
3 import java.util.vector;
4 import javax.swing.lPanel;
5 import javax.swing.lscrollrane;
6 import javax.swing.tree.DefaultMutableTreseNode;
7 import org.argouml.dev.MessageNodeBuilder;
8 import org.argouml.sequencez.diagram.Figclassifierrole;
import org.tigris.gef.base.clobals;
9 import org.tigris.gef.base.Layer;
10 import org.tigris.gef.event.GraphselectionEvent;
import org.tigris.gef.event.GraphselectionListensar;
11 import org.tigris.gef.presentation.Fig;
12 import org.tigris.gef.presentation.FigEdge;
import org.tigris.gef.presentation. FigGroup;
13 import org.tigris.gef.presentation.FigText;
14
15 public final class FigInspectorpPanel
16 extends JIPanel implements GraphSelectionListener {
17 . . A - i
private static fina ong serialversionUID = -34834560532383473380L;
18 private static final FigInspectorPanel INSTANCE =
19 new FigInspectorPanel();
20 public static FigInspectorPanel getInstancel() {
return INSTANCE;
21 ¥ '
22 private FigInspectorPanel() {
Globals. cureditor().getselectionManager)
23 .addar aphselectionListener (this);
24 setLayout{new BorderLayout());
gz public wvoid selectionChanged(GraphselectionEvent selectionEvent) {
removeall(;
27 DefaultMutableTreeNode rootNode = new DefaultMutableTreeNode(];
if ({selectionEvent.getSelections{).size() == 0}
28 Layer lay = Globals.cureditor ().getLayerMmanager {).getactiveLayer();
29 for (Object o : 1lay.getContents()) {
30 addFig (({Fig) o, roothode, false);
I3
31 } else if (selectionEvent.getselections().size() == 1) {
addrFig ({Fig) selectionEvent.getSelections().get(0),
32
13 rootNode,
Trual;
34
35 FigTree tree = new FigTree(rootNode);
tree.setRootvisible(false);
36 tres. expandallil;
37 JscrollPane scroller = new JScrollPane(tree);
38 add(scroller);
39 H
40 private void_addrFig(
final Fig T,
41 final DefaultmutableTreenode rootNode,
42 final boolean includeEncloser) {
3 " Build the selected Fig Tirst and then iterate up through

20

www.manaraa.com

'/ 1ts enclosers building those also.
45 for (Fig Tig = T;
46 fig !'= null;
47 Tig = includeEncloser 7 Tig.getenclosingFig() : null) {
DefaultMutableTreeNode TigNode =
48 new DefaultMutableTreenode(getDescr{Tigll;
49 roothode. add(TigNode];
buildTree(fig, TigMode);
50 if (fig instanceot FigClassifisrrole) {
51 MessageNodeBuilder. addNodeTree(roothode,
52 (FigClassifierrole) figl;
I
53]
i
54 private void buildTree(Fig T, DefaultMutableTreenode tn) {
55 if (f instanceof FigGroup) {
56 FigGroup fg = (FigGroup) T; N .
for {int i = 0; 1 < fg.getFiglount{); ++1) {
57 addnode(tn, fg.getrFigat{il);
T
gg } else if (f instanceof FigEdge) {
FigEdge fe = (FigEdge]) T:
Fig linerFig = Te.getFig{);
60 addnodetn, 1ineFigl;
61 addNode(tn, fe.getSourceFigNode());
62 addnodeltn, fe.getsSourcePortfig(l):
addnode(tn, fTe.getDestFighkode
63 addnodetn, fe.getDestPortFigi)
64 for (Fig pathFig : (Vector<Fig=) Te.getPathItemFigs()) {
65 addnode(tn, pathrig);
66 H
67 !
68 private void addwode{DefaultMutableTreenode thn, Fig fig) {
69 DefaultMutableTreeNode childNode =
70 new befaultMutableTreeNode(getescr (Tig));:
buildTree(fig, childNode);
71 th.add{childnNode);
i
72
73 private String gethDescr({Fig T) {
if (f == null) {
74 return null
75
76 String classhame = f.getClass({).getName]:
StringBuffer descr = new StringBuffer(
77 className.substring(className. TastIndex0T{". ") + 117;
descr.append(
78 " - bounds=[" + T.getx() + "," + f.gery () + "," + T.getwidth()
79 . + "," + T.getHeight() + "1");
it (f.isvisible()
g? descr.append(” - INVISIELE"™);
82 if (F.isFilled()) {
83 descr.append(" - FILLED");
H
84 descr. appendi
" - Ti11=[" + T.getFillColor{).getrRed() + ","
85 + T.getFi11color {J.getGreen) + " ,"
86 + f.getFillcolor (). getelua) + "1");
87 if (f.getOwner() !'= null) {
28 descr.append{” - owner="7).append{f.getOwner{J7;
I
89 if {f instanceof FigText) {
90 descr.append(” "").append({{FigText) f).getText{}).append(""\""];
i
o1 descr.append(” - Tay=").append(tostring(f.getLayer(J]))
92 deicr.agperdQ; ;tgrp— append(tostring(f.getaroup())];
93 return descr.tostring();
¥
94
95 pr‘uage“stat‘c §§[‘Eg tostring(object o) {
if (o == null)
gg return "null";:
I
try {
98 return o.toStringl);
99 T catch (Throwable &) 1
100 return "???";
101 S

Figure 2
FiglnspectorPanel Class for ArgoUML Open Source

Figure 2, provides an example for Java class, this class is called
FiglnspectorPanel.java class that is defined under a package called dev.
figinspector, this package is a part of the ArgoUML open source project
(CollabNet, 2001). FiglnspectorPanel class, as shown in Figure 2,
FiglnspectorPanel class consists of two attributes called: serialVersionUID,
and FiglnspectorPanel, one constructor with the name FiglnspectorPanel,

21

www.manaraa.com

and seven methods. In this class the method addFig uses for statement, it
invokes buildTree method in line 55. Using srcML tool we transform the
class FiglnspectorPanel. Java into XML files which have the srcML format
with xml tags that are represented hierarchically.

As shown in Figure 3, part of the parsed xml file for
FiglnspectorPanel.java class. This part of the XML file holds all the
syntactic information that is represented in the class, so we easily analyze
each artifact of the source code.

The hierarchy of the XML file is clearly seen in this Figure 4, we note
from the xml file that:

1. <class> tag that is shown as a parent node, where the type of the
class shown as < specifier > tag, and the name of class shown as
<name> tag, both < specifier >, and <name> are child node
from<class> tag .

2. The constructors are represented as <constructor> tag, it is
mentioned one time which provides us with the fact that one
constructor 1s defined within the class.

3. The method is shown as <function> tag this tag is mentioned seven
times in the XML file; from here we find that there are seven
methods within FiglnspectorPanel class.

4. The comment statement is represented with the tag that is started
with <comment type=", and ended with the tag </comment>, the
comment used in this class is line comment as the xml file shows.

5. Declaration statement is represented as <decl stmt> tag, which
appears in lines 13, and 14 to indicate that an attribute is declared.
<decl stmt> tag is a child node within the class <block> tag.

6. <specifier> tag that is an important part of class, declaration
statements, and method, it provides us with the type of each one of
them.

7. Each <block> tag within the xml file hold the information about each
method declaration and the <call> tag which provides us with the
method invocation.

8. For statement that is used in Figure 3 in the FiglnspectorPanel class
is represented in the xml file by line 35 in Figure 3.

According to this we can say that everything can be applied to a single
Java class using the srcML xml format can be easily applied to the whole
Java source code project. Since the Java project consists of a number of
structured packages that are combining an organized set of classes. For the
previous example that is represented in Figure 3, the package
dev.figinspector consists of two classes, FigTree.java class, and
FiglnspectorPanel.java.

22

www.manaraa.com

1 - <class=
2 =specifier=public</specifier=
3 <specifier=final</specifier=
class
4 <name=FigInspectorPanel</name:
5 — <super>
6 - <extends:
7 extends
zname=JPanel</name=
8 </extends=
9 + <implements=>
10 </supers
11 - =block:=
{
12 + =decl_stmt:=
13 - =decl_stmt=
14 - <decl=
15 - =type:=
16 <specifier=private</specifier=
<specifier=static</spacifier=
17 =specifier=final </specifier=
18 <name=FigInspectorPanel</name:
19 </type=
20 zname=INSTANCE </name:
+ <init=
21 </decl=
22 H
23 =/decl_stmt=
+ =function=
24 + =constructor=
25 + <functionz
26 - =function=
27 - <typex=
28 zspecifier=private </specifier=
zname =void </name =
29 </type=
30 <name=addFig</name >
31 + <parameter_list>
32 - <block:=
{
33 =comment type="line"=// Build the selected Fig first and then iterate up through<=/comment=
34 =comment type="line"=// its enclosers building those also.</comment:
35 + <for=
36 H
37 </block:=
38 </function=
+ =function=
39 - =function=
4 - =typex>
4(1) <specifier=private</specifier=
4 <name=void</name =
=/ type=
43 <namezaddNode </name =
44 - <parameter_list=
(
32 + <paramz
’
47 + <param>
48)
</parameter_list>
;1(9) - <block=
51 + =decl_stmt=
- <expr_stmtx>
52
53 - <expr>
- <call=
54 <name=buildTree</name =
55 + “argument_list
g
56 </call=
57 <fexpr=
’
58 </expr_stmts
59 + =expr_stmt=
60 ¥
61 </block:=
=/function:=
62 + <function=
63 + =function=
64 3
65 =/block=
66 </class=
</unit=
67

Figure 3
Part of the Xml File Parsed from FiglnspectorPanel Class in Figure 2

23

www.manaraa.com

3.3 Package feature extractor

Package feature extractor aims to extract the following features from
each package within the software: package name, total number of classes,
total number of constructors, total number of methods, and the total number
of attributes within each package. This is implemented by using a set of
XPath queries that are predefined in order to extract package features. For
example, // package XPath query that is used to get all packages elements
from srcML no matter where they are. The Package feature extractor is
described by a pseudo code in subsection 3.3.1, and an example that
represents the package report is presented in 3.3.2 subsection, those two
sub-sections are discussed below:

3.3.1 Pseudo Code for Package feature extractor

In this subsection we show the pseudo code for the package feature
extractor algorithm that is applied to extract the Package report, in this
algorithm the input is the XML file that is parsed by srcML tool and the
output is the Package report. Algorithm 1, illustrates the pseudo code for
Package feature extractor.

Algorithm 1: Package Feature Extractor Algorithm

For each < unit language > tag, extract: <package>, and <class>.

1
g Within each <package> tag, find : <name>.

4 Within each < class> tag, find : <name>, and <block>.

2 Within each <block> tag, find: <constructor>, <decl stmt>, and
7 <function>.

g Return:

—_
S

Package name.

Total number of classes.
Total number of constructors.
Total number of methods.
Total number of attributes.

— e
DWW~

o))

Algorithm 1, that represents the pseudo code for Package feature
extractor aims to provide the package report, this report returns with total
number of classes, total number of constructors, total number of methods,
and total number of attributes within each package. In Line 1, the
algorithm extracts two main elements from the XML file, package and
class. Those two elements appears as tags, and since the class of the target
source code contains the information about the constructors, methods, and
attributes, class tag has an important tag called block, in Line 4 those
elements are extracted. The general format for the package report is shown
in Figure 4.

24

www.manaraa.com

Package Report:

Package name of package:

Total number of classes: Total number of classes.

Total number of methods: Total number of methods.

Total number of constructors: Total number of constructors.
Total number of attributes: Total number of attributes.

Figure 4
The Generated Package Report Format
As shown by Figure 4, the key words of the generated package report
are shown as bold words, while the returned values from Algorithm 1, and
are shown as underlined words.

3.3.2 Example for Package Report

Figure 5, shows Screenshot example of the package report, which has
been generated for the package dev.figinspector, from ArgoUML open
source as plug-in library in NetBeans framework.

g2 L
63 public class FigTree extends JIree {
64

63
66
67

68 private static final long serialVersionUID = -1582265302177199132L;
69

10 [

71

72

13 fn

74| -

75 [public FigTree(DefaultMutableTreeNode fn) {

76 super(fn);

77 = 1

: Qutput - JPSSummury (run)

Package report:
W/ Package dev.figinspector
Total number of classes: 2,
) Total number of methods: 8,
.,lw-_’a Total number of constructors ¢ 2,
Total number of attributes: 3,
BUILD SUCCESSFUL (total time: 0 seconds)

Figure S
Screenshot Example for dev.figinspector Generated Package
Report from ArgoUML Open Source as plug-in Library in NetBeans
Framework

The output result in Figure 5, gives the package report, which
represent the first textual view (package report). This view consists of

25

www.manaraa.com

package name followed by the total number for each of classes, methods,
constructors, and attributes within the package. So the Package
dev.figinspector consists of two classes FigTree class, and
FiglnspectorPanel class, eight methods, one constructor and three
attributes.

3.4 Class Feature Extractor

Class feature extractor is the second feature extractor from the
proposed work; it is designed in order to provide us with the class report.
Class feature extractor, aims to extract general information about each
class. Such as class name, class type, and the package that class defined
within. Also, it aims to extract the services that class provides by getting
the methods that are defined within each class using XPath query, for
example the following XPath query :[class/function], selects all method
elements that are children in class.

3.4.1 Pseudo codes for Class feature extractor

This subsection describes two algorithms that are used to extract the
features of class, the first algorithm is Algorithm 2, that aims to extract the
general information of class, and the second algorithm is Algorithm 3,
which aims to extract the services that each class provides. For both
algorithms the input is the XML file that is generated by srcML tool.

Algorithm 2: Class Information Algorithm

For each <package>tag, extract: <name> tag, and <class> tag.

; From each <class> tag, find: <name>, <specifier>, and <extends>.
3 Return:

4 Class name.

> Package of the class.

g Class type.

8

Super class name.

From Line 1, in Algorithm 2 the name of the package and the classes
within this package are extracted. This algorithm aims to extract the
features show in Lines (4-8), depending on the following elements of the
target software class: name, specifier, and extends. <name> tag, gives the
name of class, < specifier> tag, provides the type of class, and <extend> tag
appears if the class has a super class.

26

www.manaraa.com

Algorithm 3: Class Services Algorithm

For each <class> tag, extract <block> tag:

1
g For each <block> tag, extract:
4 < function> tag:

2 From < function> tag, find:
7 <specifier>

: <name>

10 <decl>

—_
—_

<decl stmt> tag:
From <decl stmt> tag, find:
<type>
<name>
<expr_stmt> tag:
From <expr_stmt> tag, find:
<call>
<name>
Return
Method name.
Method type.
Class attribute.
Attribute data type.
Local data.
Local data types.

W W W WNNDNNNDNDODNODNDNDEND P == ===
WO~ OOV UNPAE W, OOV NS W

Each class is built from a number of methods, where every method in
the class provides a service to the class, those services are listed according
to their occurrence on the class, and by collecting these services we can say
that the class provides them to the software. The main tags that are
extracted from <block> tag are:

1- < function> tag, in Line 4. Where the children specifier, name, and

decl are extracted.

2- <decl stmt> tag, in Line 12. Where the children type, and name

are extracted.

3- <expr_stmt> tag, in line 19. Where the children call, and name are

extracted.

At the end this algorithm returns the features that are shown in Lines

(25-33). Both Algorithms 2 and 3 are used to perform the class report.

The generated report format is shown in Figure 6, that shows the class

report format that is used to view the class report, the bold words in

this figure are the key words in the report, and the underlined words in

27

www.manaraa.com

the report are the returned values from both Algorithm 2, and
Algorithm 3.

Class class name report:
Class class name is declared in package: package name as: class
type. Has a super class: class name.

If the method uses the attributes of class:

Give the following report:
The service is: Method name. The service returns method data
type. The service uses the attributes: Attribute name with
attribute data type.
This service uses the local method: Method name.
This service use Method: Invoked method name.

If the method uses the local parameters:
Give the following report:
The service is: Method name. The service returns method data
type. This service uses local data: Local data with Jocal data type.
This service uses the local method: Method name.
This service use Method: Invoked method.

Figure 6
The Generated Class Report Format

3.4.2 Example for Class report

Firstly, the generated report gives general information about the class,
this information provides the name of class, the package that holds this
class, and if the class has super class, the name of super class is shown.
Then, the services that each class provides are mentioned.

For FiglnspectorPanel class that is shown in Figure 3, the generated
class report from this class is shown in Figure 7 as plug-in library in
NetBeans framework, where it describes the services that are provided in
FiglnspectorPanel class. And since FiglnspectorPanel class consists of
seven methods, it provides seven services, followed by FigTree class
report, where FigTree 1is the second class within the package
dev.figinspector, and consists of one method, so FigTree class report
provides one service.

28

www.manaraa.com

RS TR

83 public class FigTree extends JIree {
1]

History \ B

Qutput - JPSSummury (run) H‘

u> nn

w (lass FiglnzpectorPanel report:

(lazs FighnspectorPanel declaredin package devfiginspector as public. Has a super clasz: JPanel
_~ | This class provide the following services:
% p H

The service izt getinstance, This service retums FiglnspectorPanel,

The serviceis: selectionChanged, This service returns void, The service use local data :[selectionEvent with type GraphSelectionEvent)
This service use local method: addFig,

This service use method: remaveAll, DefaultMutableTreelode, getSelections, size, curkditor, getlayerManager, getActivelayer, getContents, zet, setRootVisible, expandAll, JScrollPane, and
ad,

The service is: addFig, This service returns void, The service use local data :{f with type Fig, rootflade with type DefaultMutableTreellode, and includeEncloser with type boolean)
This service use local method: buildTree,
This service use methads: getEnclosingfiz, DefaulthMutableTreeNode, add, and addNodeTree,

The service is: buildTree, This service returns vaid, The service use local data: | fwith type Fig, tn with type DefaultMutableTreeMode]
This service use local method: addNode.
This service use methods: getFiglount, getFight, getFig, zetSourceFigllode, zetSourcePartFig, zetDestFizllode, getDestPortFiz, and getPathitemFizs.

The service is: addMode, This service returns vaid, The service use local data ftn with type DefaultMutableTreellode, fiz with type Fig)
This service use local method: buildTree,
This service use methods: DefaultMutableTreellode, and add,

The service is: getDescr, This service retums String,

This service use local method: taString,

This service use methods: getClass, gethiame, substring, astindex0f, append, geth| getY, getWidth, getHeight, isVisible, append, isVisible, isFilled, getFillCalor, zetRed, getGreen, getBlue,
getlwner, getTest, zetlayer, and zetGroup.

The service is: toString, This service raturns String, The service use lacal data :[owith type Object]
This service use method: Object,

(lass Figlree report:

(lass FigTree declaredin package dev.figinspectar as public, has 3 super class ITree,
This class provide the fallowing services:

The service is: expandAll, This service returns void,

This service use methods: depthFirstEnumeration, getPath, and setExpandedstate,

Figure 7
Screenshot Example from The Generated Class Report for Class
FiglnspectorPanel, and Class FigTree in package dev.figinspector as
plug-in Library in NetBeans Framework

3.5 Class Call Graph Visualizer

In order to measure the quality of the class, a set of metrics are
applied. The proposed methodology applies four metrics to measure the
quality of the class: LOCM, RFC, NOC, and WMC metric. Also the
proposed methodology calculates the class size. These metrics and
calculations are discussed by the algorithms 4, 5, 6, 7 and 8. The generated
class call graph depends on both class report and the xml file.

29

www.manaraa.com

Each one of the metrics that are used in the class call graph is
generated by an algorithm. The extracted class call graph represents all the
method invocations, if they are directly invoked, or indirectly. Class call
graph Visualizer is discussed by the following subsections.

3.5.1 Class Call Graph Visualizer pseudo codes

In order to visualize the class call graph, firstly we start to discuss
class size by Algorithm 4, and then class metrics are discussed by
Algorithms (5-8).

Algorithm 4: Class Size Algorithm

For each <block> tag:
Count < function> tag.
Count <decl stmt> tag.
Return :
Total number of methods.
Total number of attributes.

DN A W =

As Algorithm 4 shows, both total number of methods and total
number of attributes are the main features used to shape the class size,
where this algorithm depends on <block> tag, where the two calculations
occurs, counting <function> tag, and counting < decl stmt> tag. After that
Algorithm 5 is transformed in order to measure (LOCM).

Algorithm 5: Lack Of Cohesion Metric (LOCM) Algorithm

For each < function> tag, Do:
In every <name> within <expr> check :
If (<name> in <decl stmt> is accessed by the same <expr> in
<expr_stmt>)
Define set 1, where: Set 1= {accessed attribute names}.

Else define set j, where: Set j= ©.
For Function(1) to Function(n):
((Functionl.setl) N (Function 2.set2)....(Function (n-
1).set(n-1)) N Function (n).set(n))
Let X = the number of null intersections.
13 Let ¥’ = the number of non-empty intersections.
14 Calculate LOCM =|X| — |Y].
15 Return (LOCM).

O 00 1IN DN W =

p—
N = O

Algorithm 5 illustrates the pseudo code for LOCM algorithm. Line 3
checks if the name of attribute within the declaration statement is accessed
by the expression of functions within class in order to organize them into
sets, where two sets for each method of each class are defined. The
following XPath query //src:decl stmt, find all declaration statements.

30

www.manaraa.com

The first set holds the names of the attributes accessed by the method,

and the second set defined to hold ?. Which then the intersection between
those two sets is found, at the end subtracting the non-empty intersections
from the null intersections gives the LOCM for each class. Algorithm 6
illustrates the pseudo code for the Response for Class Metric algorithm.

Algorithm 6: Response for Class Metric Algorithm

Input: Algorithm 2.
Define Set 1, Set 2.
In every <function> tag, do:
If (<name> of <function> declared in <class>)
Add name to Set 1.

Else
Add method name to Set2.

RFC =Set 1 U Set 2.

1
2
3
4
5
6
7
8
9
10 Return (RFC).

The pseudo code of the response for class that is represented by
Algorithm 6 depends on Algorithm 2, class information algorithm. Set 1
contains the names of local method invocation as described in line 4, and
Set 2 contains the names of non-local method invocation. The union
between those two sets provides us with RFC metric as Line 9 shows. In
order to measure the software quality Weighted Methods per Class is
another metric used, this metric is shown in Algorithm 7.

Algorithm 7 : Weighted Methods per Class Algorithm

Inputl: Algorithm 10.

Input2: Xml file.

In each <class> tag, find every <function> tag:
Calculate program vocabulary for each <function> tag.
WMC =} program vocabulary.

Return (WMC).

AN AW —

Algorithm 7, aims to calculate Weighted Methods per Class depends
on the program vocabulary for each method, so we call the Hallstead
complexity that is calculated by Algorithm 10. To return the WMC, the
algorithm sums the program vocabulary for each method in the class.
Algorithm 8 is set to calculate the number of children metric for each class.

31

www.manaraa.com

Algorithm 8 : Number Of Children algorithm (NOC)

1 Find all super classes

2 If (the <name> of the super class is found in another <class>
3 or <name> have <extend>)

4 Count <class>.

> Return count;

NOC metric that is shown by Algorithm 8 depends on the super class
names that are mentioned as a class name in another <class> tag. The
following XPath query example aims to Find all super classes:
[//src:class[src:specifier][.='super ']], and in order to returns the NOC, we
count the classes that satisfy the condition in Line 3. Algorithm 9,
illustrates the pseudo code for the class call graph algorithm.

Algorithm 9: Class Call Graph Algorithm

[nput 1: Returned values from Algorithm 4.
[nput 2: Returned values from Algorithm 5.
[nput 3: Returned values from Algorithm 6.
[nput 4: Returned values from Algorithm 7.
[nput 5: Returned values from Algorithm 8.
Draw rectangle with local method name for each method.
Draw line between the local methods that call each other.
Draw dotted rectangle with method name for each invoked
method.
Draw dotted line between the local methods of class and its
invoked method.
Count the number of local methods that calls each other.
Put this number on the line matches between those methods.

OO\ WD WD

—t et = = \O
W= O

As shown in Algorithm 9, this algorithm is used to draw the class call
graph depending on calling number algorithms (4-8), in Lines (1-5), two
types of rectangles are drawn, rectangle for local methods names that
performs an invocation, and doted rectangle for local methods names that
are invoked. Also two types of lines are drawn, line that matches between
local methods that calls each other, and the dotted line that matches
between the local methods of class and its invoked method.

Figure 8, shows the Class Call Graph format. From Figure 8, the
named rectangles (M1-MS5), are local methods names that performs an
invocation, and the named of doted rectangles (M6, M7) are the invoked
methods that are not local methods. The lines that are drawn within the
class shape matches between local methods that calls each other, and the
dotted line that appears outside the class shape matches between the local
methods of class and its invoked method. The name of class, class size, and

32

www.manaraa.com

the main class metrics (LOCM, RFC, WMC, and NOC), are represented as
a dotted rectangle that appears on the top left corner from the class.

Class Name: NAME

of methods: X.
of attributes: Y.

M1

\

LOCM : A M2 M3 :;I
RFC:B] - "
WMC:C . ol M6 |
NOC:D AN I

N,

M5 M4 \\\
| e g
Y, I
"‘. M7 H
1]
e e o o e e o i
Figure 8

Class Call Graph Format

3.5.2 Class Call Graph (CCG) Example
FigTree class that is reported in Figure 5 is represented as FigTree

class call graph

depthFirstEnumeration, getPath,

in Figure 9. The method expandAll
and setExpandedState methods that

invokes

appears in dotted rectangles, and matches by a dotted lines, this indicates
that they are not local methods.

Class metrics and class size are shown on the left top of the class call
graph figure, for FigTree class, this class contains one method, and one
attribute. Class metrics are clearly shown, where LOCM= -1, RFC=4,

WMC=25, and NOC=0.

Class Name: FigTree

of methods: 1.
of attributes:1.

LOCM: -1.
RFC: 4.
WMC: 25.
NOC:0.

expandAll k.

depthFirstEnumeration

b getPath

setExpandedState

Figure 9

The Generated Class Call Graph for FigTree Class from Package

dev.figinspector

33

www.manaraa.com

3.6 Method Control Flow Graph Visualizer

Method control flow graph visualizer provides us with method control

flow graph. This visualizer is discussed in the following subsections:

3.6.1 Pseudo codes for method control flow graph visualizer

Halstead complexity and Cyclomatic complexity are the main metrics

that are used to measure the quality of the method. Algorithm 10, illustrates
the pseudo code for the Halstead complexity algorithm. And in order draw
control flow graph automatically, we propose a new approach that depends
on introducing a group of rules shown in Table 3, and Appling the pseudo
code of Algorithm 11.

Algorithm 10: Halstead Complexity Algorithm

O 00 1IN DN W=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

define the following numbers:
nwm] : is the total number of distinct operators.
nuwm?2 : is the total number of distinct operands.
NU M1 : 1s the total number of operators.

N UMz ;s the total number of operands.
nput: xml file extracted by srcML generator.
n every < function> tag Do:
Ignore <comment> tag information.
Split word followed by a character, or character followed by word.
Split number followed by character, or character followed by number.
Find fixed symbols and reserved word within <function> tag.
Define fixed symbols and reserved word within <function> as NUMI.
Define everything else as NUM2.
Calculate the defined numbers.
Perform the following calculations:

Program vocabulary: num = numl + num?
Program length: NUM = NUM1 + NUM?2

Volume: voL = NUM log, num

Difficulty: DIFF = (”“:”1) . (‘* L’-‘”’E)

2 num?2
Program effort: EF0 = VOL/DIFF
Return :
Program vocabulary.
Program length.
Volume.
Difficulty.
Program effort.

34

www.manaraa.com

As shown in Algorithm 10, this algorithm is used to calculate the
measures of Halstead complexity, depending on the xml file, immediately
the function tag. The features that this algorithm provides are shown in
lines (31- 35), those extracted features are depending on number of steps
performed in Lines (12-19). In Algorithm 11, we illustrate a pseudo code
to draw the method control flow graph.

i Algorithm 11: Method Control Flow Graph Algorithm
1 Input 1: returned values from Algorithm 10.
2 Input 2: the generated xml file.
3 - Insert the start node for each < function > tag followed by an edge.
g - Insert branches for each of the following tags < condition >, <expr_ stmt>,
6 <do >, <try >and the < break> tag, the break statement contain no branch.
; - Insert the end node for each < /function > tag.
9 - Apply ruled defined in Table 3 below.
10
11 - Define E D as total number of edges.
12
13 - Define N D as total number of nodes.
ig - Perform the following equation:
> - CC=ED-ND+2
18 Return:
19
20 Method control flow graph.
21
77 Method name.
gi Cyclomatic complexity CC.
25 Program length.
26
27 Program vocabulary.
28 Volume.
29 :
30 Difficulty.
31 Program effort.
32

Algorithm 11, performs the operations that draw the method control
flow graph depending on a list of rules defined in Table 3, and also it
depends on both Cyclomatic complexity measures that are discussed in
Lines (12-17), and Halstead Complexity measures that is taken as input to
represent the method control flow graph, where the main elements of this
measure are both nodes and edges.

35

www.manaraa.com

Method is the main element in MCFG, so, start node and end node are
inserted into the graph according to the <function> tag, this is shown in
Lines (3, and 7) insertion , the branches insertion according to the XML file
are shown in Lines (4, and 5). At the end the main elements that shape
method control flow graph are shown in Lines (21-32). Figure 10, shows
MCFG format.

Table 3
Rules To draw Branch Statements in the Generated MCFG

Statement Type Rule

If statement The node of if statement contains two branches, the true
condition node and the false condition.
The node of the try statement contains as many branches
Try statement as catch plus try statement and if finally statement found
as many try and catch statement as edges between them
point to the finally node.
Each for statement node has two branches, the condition
node and the increment node. Draw a forward edge
For statement between increment node and condition node. Also, there
is an edge between condition node and the last node that
have an edge with end node.

While Each while statement node has two branches.
statement

Switch statement node contains a number of branches as
Switch many cases and/ or the default. If the case ended with the
statement break, draw an edge between case node and end node;

else draw an edge between the node and the next
expression statement.
Do- while Draw a forward edge from the while expression
statement statement node to do node.

As shown from Table3, a set of rules are introduced to discuss how
the branches and nodes of the MCFG are inserted. Each statement type has
a set of rules that are presented to draw the branches that represents this
statement. We can see from Table 3, that if statements have two branches,
depending on the condition, so this condition may be either true, or false. In
try statement the branches are drawn to represent try and catch. Also since
switch statement has many cases and/or default, each of them is
represented as branch.

In For statement the first branch is the next. And the second one is the
inner part of the loop. While statements, and do-while statements are
similar to the for loop, but in do-while do node make the different between
them.

36

www.manaraa.com

Programvocabulary =Z.
Volume=W.
Difficulty=A.

Program effort= B.

Method Name: NAME

H START
McCabe’sCC=X. i
Programlength =Y. i

i

e

> if (CONDITION)]
)
\

Figure 10
Method Control Flow Graph Format

As shown in Figure 10, the MCFG format represents the method
information as number of branches, in this figure the condition has two
branches, one of them aims represents the true condition, and the other
branch aims to represent the false condition, the true, and false appear on
the branch that matches the condition node with the child nodes from each
branch. Every statement in the XML file is represented as a node.

Method metrics are represented within a rectangle that appears on the
left top corner of the MCFG representation, where it holds both Cyclomatic
complexity measures, and Hallstead complexity measures, after mentioning
the method name.

3.6.2 Method Control Flow Graph (MCFG) Example

The graphical views that represent the method control flow graph
from the proposed methodology contain the some metrics calculation
within it. Figure 11, shows an example of the method addFig control flow
graph, this method is represented in the class FiglnspectorPanel, as Figure
3 shown. The control flow graphs in Figure 11, provides the information
about both Cyclomatic complexity which is equals to 2, and Hallstead
complexity metrics which are applied to measure the quality of the method
addFig. Program length is 79, program vocabulary is 31, the volume of this
method 1s 391.38, difficulty is 54, and the program effort is 7.25.

In Figure 11, the control flow graph that represents addFig method
provides this service depending on for loop statement, which is started in
the following declaration statement: fig = f, that is represented in the first
node of the tree, followed by the condition node which has two child’s, the
true condition that perform two expression statements each one represented
in a node, then if statement which also depends on a condition represented

37

www.manaraa.com

in a node and its two child each of them also represented in a node, both if
condition child nodes when they end they go to the end node in the control
flow graph when true, or false condition occurs.

Method Name: addFig START
McCabe's CC= 2.
Program length=79.
fig '= null
T
b}

Programvocabulary =31.
Volume=391.38.
[rootNode.add({fighode);)

Difficulty=54.
Program effort=7.25.
rootNode.add({figNode);)]

[if (fig instanceof FigClassifierRole)]

f/ \T

[fig = includeEncloser ? fig.getEnclosingFig() : null)] [

/ H
[if (fig instanceof FigClassifierRole)] [MessageNudeBuilder.addNodeTree[rootNode, {FigClassifierRole) fig);]
Figure 11

The Generated Method Control Flow Graph For addFig Method
from Class FigInspectorPanel

www.manaraa.com

http://www.tcpdf.org

‘e o* inghialljl

& DARALMANDUMAH

Aipa s La Ll o cig B2 sy T

Automatic Generation of Descriptive Summary for Source Code Artifact Ulgusll

Wadlue solol «wglal

osaannndyl algoll

(WO yiao)doxo (sdlao dlo> ton> Gusléo

2016 NIV IF TR |

g0 :&990

1-86 1ol=aall

951089 :MD 8,

ol JSlw, ' Sgizall g9

English :axlll

> bo allw, 1auolell ax)all

&@ao asol> rasol=l

el wlwl)adl ésloc radsdl

ws,VI gl

Dissertations 10logleoll aclgd

ENWILTE TSV UICILVE Y SVIRIG FE S SW L UWATY. S ‘&aolgo
https://search.mandumah.com/Record/951089 ol

) ‘ cabgazo Jgixll gro .aoghinll > 2019 ©
plaziwlW 8slall 0ds dclb ol Juozi dhiSoy abbga=o ,uindl Jgi> grox Ol lode il si> Llol go g8sadl SVl (sle sy a>lio 85lodl 0in
_,|> 9|),ou| JQD wlxol o @b Cu i V9> (Es\Jg):LSJ\” _1,4).9J| 9| C.J),IJW 8§|9_o JI.o) Qng sl peiel)_ou| 9| Jnga.” 9| é.w.i.” &ioug Jnsd M».L”
oglaioll

www.manaraa.com

https://search.mandumah.com/Record/951089

Chapter 4
Experimental study and conclusion

In this chapter, we introduce two case studies that aim to discuss the
proposed methodology. And in order to discuss the results of the generated
descriptive summary for the proposed methodology, Table 4 lists the
previous approaches that focuses on generating descriptive summaries for
the source code artifact, the input artifact from the target source code, and
the output that represents the type of descriptive summary from the input
artifact from the previous approaches, and the proposed approach.

In this subsection there are two case studies are illustrated to discuss
the proposed methodology, the first case study summarizes the Junit 3.8.1.
(Slashdot, 2016) open source code, which has twelve organized packages.
And the second case study are applied to summarize the open source code
UMLGraph-5.7 2.3 (License, 2014), where it has just two packages. For
each case study the generated descriptive summary contains the textual
report that appears as one package report, ten class reports. And the
graphical representation that appears as ten class call graphs, and ten
method control flow graphs. The following sub-sections discuss in details
the experimental study for each case study.

4.1 Experimental study

In order to discuss the proposed methodology, two java open source
code project are summarized. The first case study is Junit 3.8.1, this open
source project is a framework that is used to write repeatable tests. It is
large size project. The second case study is UMLGraph-5.7 2.3, a java
open source code project that is used to draw UML class, and sequence
diagrams automatically. It is a small size project. The following
subsections are introduced to discuss the case studies in details.

4.1.1 Case study 1

The first case study discussed according to the proposed methodology
i1s the Junit 3.8.1(Slashdot, 2016), Java open source code, in order to
generate a descriptive summary. This generated summary is hydride of
texts, graphs, and numerical measures. The summarized artifacts from this
case study are discussed in Figure 11, the described sub sections of case
study 1 are part from the generated descriptive summary, where it is shown
in Appendix 1.

39

www.manaraa.com

Packages Classes Methods
awtui awtui/ ProgressBar framework/ Assert
/assertTrue
extensions framework/ Assert
framework/ Assert
framework framework/ / assertFalse
AssertionFailedError
runner framework/ Assert
framework/ / fail
samples ComparisonFailure
framework/ Assert
samples.money Sframework/ TestFailure / assertEquals
swingui framework/ TestResult framework/ Assert
/ assertNotNull
tests framework/ TestSuite
framework/ Assert
tests.extensions extinstion/ RepeatedTest / assertNull
tests.framework swingui/ AboutDialog framework/ Assert
/ assertSame
tests.runner runner/LoadingTestController
framework/ Assert
textui / assertNotSame
framework/ Assert
/ failNotEquals
framework/ Assert
/ failNotSame
Figure 11

The Target Software Artifacts from Junit Open Source Code that are
used to Generate the Descriptive Summary

4.1.1.1 Package report

In package report we aims to give a brief description about the
software, this description includes information about each package, these
information are focused on giving a quantity number for each package such
as: total number of classes, total number of constructors, total number of
methods, and the total number of attribute within each package.

Figure 12 shows the first generated report, the package report for the
Junit open source code. It shows that, the generated package report starts

40

www.manaraa.com

with the package name, followed by the total numbers for each classes,
methods, constructors, and attributes. This report lists all the packages that
form the software. This report starts to summarize the package awtui,
where 1t has 4 classes, 22 methods, 4 constructors, and 27 attributes. And
ended by summarizing the package textui, where it has 2 classes, 24
methods, 4 constructors, and 6 attributes.

Package report

Package awtui

Total number of classes: 4.

Total number of methods: 22.
Total number of constructors : 4.
Total number of attributes: 27.

Package extensions

Total number of classes: 5.

Total number of methods: 15.
Total number of constructors : 8.
Total number of attributes: 0.

Package framework
Total number of classes: 10.
Total number of methods: 0.

Total number of constructors : 10.

Total number of attributes: 7.

Package runner

Total number ofclasses: 5.

Total number of methods: 57.
Total number of constructors : 4.
Total number of attributes: 20.

Package samples

Total number ofclasses: 13.
Total number of methods: 17.
Total number of constructors : 0.
Total number of attributes: 4.

Package samples. money

Total number of classes: 2.

Total number of methods: 62.
Total number of constructors : 1.
Total number of attributes: 5.

Package swingui

Total number of classes: 11,

Total number of methods: 129,
Total number of constructors - 10.
Total number of attributes: 47,

Package tasts

Total number of classes: 2.

Total number of methods: 3.
Total number of comatructors : 0.
Total number of attributes: 1.

Package tests. extensions

Total number of classes: 5.

Total number of methods: 26,
Total number of comstructors : 0.
Total number of attributes: 2.

Package tests. framewaork

Total number of classes: 18,
Total number of methods: 90,
Total number of comstructors : 0.
Total number of attributes: 8.

Package tests. runnar

Total number of classes: 10,
Total number of methods: 37,
Total number of corstructors : 1.
Total number of attrbutes: 4.

Package textul

Total number of classes: 2.

Total number of methods: 24.
Total number of comstructors : 4,

Total number of attributas: 6.

Figure 12
The Generated Package Report for Junit Open Source

4.1.1.2 Class report
Class report provides a textual descriptive summary that summarize
the class with the services that class provides. This subsection shows the
generated class report for Assert class of the package framework. Figure
11, is the second generated report from the proposed methodology, it
summarize Assert class in framework package.

41

www.manaraa.com

0NN AW~

Class Assert report:
Class Assert declared in package framework as public.
This class provide the following services:

The service is: assertTrue. This service returns void. The service uses local data:{ message
with type String, and condition with type boolean).
This service use local method: fail.

The service is: assertTrue. This service returns void. The service uses local data:{ condition
with type boolean).
This service use local method: assertTrue.

The service is: assertFalse. This service returns void. The service uses local data:{ message
with type String, and condition with type boolean).
This service use local method: assertTrue.

The service is: assertFalse. This service returns void. The service uses local data:[message
with type String, condition with type boolean).

The service is: assertFalse. This service returns void. The service uses local data:{with type
boolaean).
This service use local method: assertFalse.

The service is: fail. This service returns void. The service uses local data:{ message with

type String).
This service use local method: AssertionFailedError.

The service is: fail. This service returns void.
This service use local method: fail.

The service is: assertEquals. This service returns void. The service uses local data:(
message with type String, expected with type Object, and actual with type String).
This service use local method: failNotEquals.

The service is: assertEquals. This service returns void. The service uses local data:(
expected with type Object, and actual with type Object).
This service use local method: assertEquals.

The service is: assertEquals. This service returns void. The service uses local data:{ message with type String,
expected with type String, and actual with type String).
This service use the method: ComparisonFailure.

The service is: assertEquals. This service returns void. The service uses local data:{ expected with type String, and
actual with type String).
This service use local method: assertEquals.

The service is: assertEquals. This service returns void. The service uses local data:{ message with type String,
expected with type double, actual with type double, and delta with type double).

This service use local method: failMotEquals.

This service use methods: isInfinite.

The service is: assertEquals. This service returns void. The service uses local data:{ expected with type double, actual
with type double, and delta with type double).
This service use method: failNotEquals.

The service is: assertEquals.This service returns void. The service uses local data:{ message with type String,
expected with type float, actual with type float, and delta with type float).

This service use local method: failMotEquals.

This service use methods: isInfinite.

The service is: assertEquals. This service returns void. The service uses local data:{ expected with type float, actual
with type float, and delta with type float).
This service use local method: assertEquals.

The service is: assertEquals. This service returns void. The service uses local data:{ expected with type long, and
actual with type long).
This service use local method: assertEquals.

42

www.manaraa.com

59 The service is: assertEcuals. This service returns void. The service uses local data:(message with type

60 String, expected with type boolean, and actual with type boolean).

61 This service use local method: assertEquals.

62 The service is: assertEquals. This service returns void. The service uses local data:(expected with typ

63 boolean, and actual with type boolean).

64 This service use local method: assertEquals.

65

66 The service is: assertEcquals. This service returns void. The service uses local data:(message with type

67 String, expected with type byte, and actual with type byte).

68 This service use local method: assertEquals.

gg The service is: assertEquals. This service returns void. The service uses local data:(expected with type
byte, and actualwithtype byte).

;; This service use local method: assertEquals.

73 The service is: assertEcuals. This service returns void. The service uses local data:(message with type

74 String, expected with type char, and actual with type char).

75 This service use local method: assertEquals.

76

77 The service is: assertEcuals. This service returns void. The service uses local data:(expected with type

78 char, and actualwith type char).

79 This service use local method: assertEquals.

80 The service is: assertEcuals. This service returns void. The service uses local data:(message with type

81 String, expected with type char, and actual with typeshort).

82 This service use local method: assertEquals.

83

84 The service is: assertEcuals. This service returns void. The service uses local data:(expected with type

85 char, and actualwith type short).

86 This service use local method: assertEquals.

g; This service is: assertEquals. This service returns void. The service uses local data:{ message withtype

39 String, expected with type int, and actual with type int).
The service use local method: assertEauals.

90

91 The service is: assertEquals. This service returns void. The service uses local data:{ expected with type int,

92 and actual with typeint).

93 This service use local method: assertEquals.

94

95 The service is: assertMotNull. This service returns void. The service uses local data:(object withtype Object).

9 This service use local method: assertMotMull.

97 The service is: assertMotMNull. This service returns void. The service uses local data:{ message withtype

98 String, object with type Object).

99 This service use local method: assertTrue.

100

101 The service is: assertMNull. This service returns void. The service uses local data:(object with type Object).

102 This service use local method: assertMNull.

103

104 The service is: assertMull. This service returns void. The service uses local data:(message with type String,

105 and object with type Object).

106 This service use local method: assertTrue.

107 The service is: assertSame. This service returns void. The service uses local data:(message with type String,

108 expected with type Object, and actual with type Object).

109 This service use local method: failNotSame.

110

111 The service is: assertSame. This service returns void. The service uses local data:{expected with type Object,

112 and actual with type Object).

113 This service use local method: assertSame.

114

115 The service is: assertMotSame. This service returns void. The service uses local data:(message with type
String, expected with type Object, and actual with type Object).

116

117 This service use local method: failSame.

118 The service is: assertMotSame. This service returns void. The service uses local data:(expectad with type

119 Object, and actual with type Object).

120 This service use local method: assertNotSame.

43

www.manaraa.com

121 The service is: failSame. This service returns void. The service uses local datamessage withtype

122 String).
123 This service use method: fail.

124 The service is: failNotSame. This service returns void. The service uses local data:{ message with
125 type String, expected with type Object, and actual with type Object).

126 This service use local method: fail.
127
128 The service is: assertSame. This service returns void. The service uses local data:{ message with type

String, expected with type Object, and actual with type Object).
129 This service use local method: failNotSame.
130
131 The service is: assertSame. This service returns void. The service uses local data:{expected with type
132 Object, and actual with type Object).
This service use local method: assertSame.

133
134 The service is: assertMNotSame. This service returns void. The service uses local data:{ message with
135 type String, expected with type Object, and actual with type Object).
136 This service use local method: failSame.
137 The service is: assertMNotSame.This serviece returns void. The service uses local data:{ expected with
138 type Object, and actual with type Object).
139 This service use local method: assertNotSame.
140
141 The service is: failSame. This service returns void. The service uses local data message with type
142 String).
This service use local method: fail.
143
144 The service is: failNotSame. This service returns void. The service uses local data:{ message with
145 type String, expected with type Object, and actual with type Object).
146 This service use local method: fail.

Figure 12
The Generated Class Report From Assert Class

As shown from Figure 12, Assert class report starts by describing
general information about the class Assert, which shows that class Assert
declared as a public class in the package framework, and it has no super
class. There are 42 method within assert class, so each method provides a
service. The first service that Assert class provides is assertTrue that is
shown by line 4, this service is also provided another time in line 7, but this
service uses different local data.

The service assertEquals provides to Assert class more than one time,
in each time it uses different number and different type of local data. The
last service that Assert class provides is failNotSame that is shown in line
144, this service returns void, and uses three local data: message, expected,
and actual. It also depends on fail method, since it uses it as a local method.

4.1.1.2 Class Call Graph (CCG)

Figure 13, shows Assert class call graph, that is the third part from the
generated summary. In the generated class call graph, we note that the
method assertequals invokes failnotequals method three times. Failname
method invoked by assertNotsame method within the same class Assert.
AssertionFailedError method doesn’t defined in Assert class, but it is
invoked by fail method. So it is shown as dotted rectangle. The total
numbers of class assert methods equals: 34. Are represented on left top of
the class call graph.

44

www.manaraa.com

Class Name: Assert

of methods: 34.
of attributes:0.

LOCM :34.
RFC:23.
WMC:133.
NOC:1.
assertNotsame f |
I assertTrue 2

failsame

failNotsame

assertSame

<

fail

1
—=—=- AssertionFailedError
L

I

assertFalse

assertNotNull I(:I

assertNull

failNotequals .
~,
<) A

Comparasio

nFailure

| I |

3 N
1

\4 H

%'6 H abs 1

[A——
assertEquals |—— | 77T
S)
[[=>] isInfinite |

Figure 13

The Generated Class Call Graph For Assert Class

4.1.1.3 Method Control Flow Graph (MCFG)

In this subsection, an example for the fourth part of the generated
summary, which summarize assertTrue method control flow graph. It is
represented in Figure 14, where assertTrue is service provided by Assert
class, in this figure, if statements have two child nodes, the true condition
and the false condition, for the assertTrue method, if the condition is true it
calls the method fail, else it returns. The method metrics for this method are
shown in the left top of the figure.

The calculated method metrics for assertTrue method shown as
follows: the Cyclomatic complexity is shown by McCabe’s CC = 2. The
Hallstead complexity is shown by the following results: Program length is
27, Program vocabulary is 6, Volume is 28.53, Difficulty is 1.6, and the

Program effort is 17.83.

Method Name: assertTrue
MicCabe’s CC = 2.

Program length =27.
Program wocabulary =6.
Volume= 28.53.
Difficulty= 1.86.

Program effort= 17.83.

START

[if (lcondition)]
[failimessage)]

Figure 14

The Generated Method Control Flow Graph For assertTrue Method

45

www.manaraa.com

4.1.2 Case Study 2

The second case study discussed according to the proposed
methodology is the UMLGraph-5.7 2.3 (License, 2014), the Java open
source code, in order to generate a descriptive summary. This generated
summary is hydride of texts, graphs, and numerical measures. This case
study is discussed in Figure 11. The generated descriptive summary of case
study 2, is described as a subsection, and shown in Appendix2.

Packages Classes Methods
doclet/ ClassInfo doclet/ ClassInfo
/ addRelation
doclet/ ClassGraphHack
doclet/ ClassInfo
doclet/ ContextMatcher / main
doclet/ DevNullWriter framework/ Assert
doclet / matchesOnes
doclet/ ContexView
framework/ Assert
test doclet/ Shape / addRelation
doclet/ RelationPattern framework/ Assert
/ addToGraph
test/ RunDoclet
framework/ Assert
test/ TestUtils / runDoclet
test/ RunOne framework/ Assert
/ cleanFolder
framework/ Assert
/ cellBorder
framework/ Assert
/ graphvizAttribute
Figure 15

The Target Software Artifacts from UMLGraph Open Source Code
that are used to Generate the Descriptive Summary

4.1.2.1 Package Report

The generated package report for UMLGraph-5.7 2.3 open source code is
shown in Figure 16, which is described as a textual report that provides the
quantities calculation for each package within the target software.

46

www.manaraa.com

Package report:

Package doclet

Total number ofclasses: 24.

Total number of methods: 286.
Total number of constructors : 14.
Total number of attributes: 119.

Package test

Total number ofclasses: 7.

Total number of methods: 41.
Total number of constructors : 2.
Total number of attributes: 21.

Figure 16
The generated Package Report For UMLgraph Open Source Code
packages

4.1.2.2 Class Report
Class report provides a text summary description about the class with
the services that class provides. A list of figures below shows the generated
class report for some classes of UMLgraph Open Source Code. Figure 17,
shows ClassInfo class report.

1 Class Classinfo report:

2

3 Class Classinfo declaredin package doclet.

4 This class provide the following services:

5

6 The service is: addRelation. This service returns void. The service uses local data :(dest with type

7 String, rt with type RelationType, and d with type RelationDirection).

8 This service use local method: addRelation.

9 This service use methods: get, RelationPattern, and put.

10

11 The service is: getRelation. This service returns RelationPattern. The service uses local data:(dest with
12 type String).

13 This service use local method: relatedClasses.

14 This service use methods: get.

15

16 The service is: reset. This service returns void. The service uses the attribute: (classNumber with type
17 int).

Figure 17
The Generated Class Report for ClassInfo Class

As shown in class report in Figure 44, ClassInfo class is declared in
package doclet, this class provides three services, the first service is
addRelation which returns void, this service depends on dest, rt, and d data
type. addRelation service depends on the methods: get, relationPattern, and
put.

47

www.manaraa.com

4.1.2.3 Class Call Graph (CCG)
In this sub-section the classes that are reported in section 4.1.1.2 are
viewed as class call graph for each one of them.

Class Name: Classinfo
Class size: addRelation E"""‘--a- put
of methods: 3. ST

-~ -~
of attributes:5. < e

S Al RelationPattern

LOCM : -1. R
RFC: 7. e
WMC:50. relatedClasses 0N, get
NOC:0. = =7

"
getRelation e

Figure 18
The Generated Class Call Graph for ClassInfo Class

ClassInfo class call graph that is viewed in Figure 18 that was reported
in Figure 17. ClassInfo class consists of three methods, each method in this
class participates in an invocation, either it invokes another method, or it is
invoked by another method. For example relatedClasses method is invoked
by both getRelation method, and addRelation method. Also the method
addRelation perform a recursive call, and it is clearly shown in this figure.

The method RelationPattern, put, and get are represented as a dotted
rectangles, and occur outside the class, which indicate that they are not
local method. The total number of attributes in this class is 5, ClassInfo
metrics shows that this class has no children, the LOCM 1s 3, RFC is 7, and
the WMC is 50, NOC is 0.

4.1.2.4 Method Control Flow Graph (MCFG)
This subsection views addRelation method control flow graph in

Figure 19, this method is reported in the ClassInfo class report within
Figure 16.

48

www.manaraa.com

Method Name: addRelation
MecCabe’s CC= 2. START
Programlength =54.

Programvocabulary=23.
Volume=244.27. W
Difficulty=16.88.

Program effort=14.50.

[RelationPattern ri = relatedClasses.get(dest);]

Y

[if [RelationPattern ri = relatedClasses.get(dest);== null && actual == null)]

/\T\

[ri.addRelation(rt, d);] [ri = new RelationPattern(RelationDirection.NONE);]

h 4

relatedClasses.put{dest, ri);]

Figure 19
The Generated Method Control Flow Graph For addRelation Method

The generated method control flow graph for addRelation method,
that 1s shown in Figure 19, starts with a declaration statement that 1s added
after the start node, then if statement node, is added when the condition is
true it performs the statement “ = new
RelationPattern(RelationDirection.NONE); then the statement
relatedClasses.put(dest,r1); is shown as a branch. And if the condition is
false, the branch ri.addRelation(rt, d); is performed.

4.2 Source Code Artifacts Summarization Approaches and Results
Discussions
In this sub-section we list some of the previous approaches that
introduce a descriptive summary for the source code artifact, in order to
discuss the proposed approach results by comparing them with the previous
approaches. These approaches are summarized by Table 4. The aim of
introducing this sub-section to show that our generated descriptive
summaries depend on the previous evaluated approaches to enhance the
generated summaries.
From Table 4, and Table 5, the proposed approach input software that
contains packages, classes, and methods. This software is analyzes

49

www.manaraa.com

statically using srcML tool that provides more information about the parsed
source code for AST as a data format, and as a structured document srcML
it is directly supports representing multiple levels within the AST, In order
to generate a descriptive summary which is hydride of texts, graphs, and
numerical measures from the analyzed software.

The reason that method report is not introduced as a single report that
class report adds all method descriptions together, and also the method
control flow graph that introduced to each method within class cover the
un-reported information about each method within the summarized class as
a graphical representation.

Our primary goal of the proposed approach is to generate automatic
descriptive summary for source code artifact, so this study aims to examine
the following research questions:

RQI- Does the generated descriptive summaries summarize the

software and describes, and identify the source code artifacts (package,
class and method) automatically?
We can clearly see that the proposed approach describes and identifies the
following source code artifacts: the package report was generated and
identifying the software packages automatically since it presents a view
about the size of the software, and also it provides a general view about the
software.

The class report, and class call graph display information about each
class, they show the main content for each class, class size that is presented
with a total number of methods, and total number of attributes, and the
main class metrics that measures the quality of each class. At the end the
method control flow graph that provides an important view for each
method within the class supported by the main method metrics that
measures the quality of each method.

RQ2- Does the generated descriptive summaries reflect the
developers' understanding of the software?

To answer this question we return to the previous evaluation methods
that were applied on the generated summaries, which shows a good result.
And since the proposed approach is similar to them, this indicates that it
will also provide a good results in reflecting the developers understanding
of the software. Especially that it provides a descriptive summary that is
represented in textual, and graphical views, and it also covers more than
one granularity level within the software.

50

www.manaraa.com

Table 4
Our Methodology vs others

Work Methodology
Proposed Static analysis depending on srcML tool,
Methodology Metrics trace technique, Visualization
techniques, Querying technique, and
Feature locating techniques

1. (Moreno, Static analysis based on AST and method
2013) call

2. (Sridhara G. Static analysis depending on AST, and CFG,
e., 2010) and the natural language analysis

3. (McBurney, Static analysis based on AST
2014)

4. (Sridhara G. Static analysis based on AST, and natural
e., 2010) language analysis

5. (Graham, Metrics trace technique
2004).

6. (Ellina, 2007). analyzing the python source code statically

7. (Alimucaj, Static analysis for java method depending
2009). on the AST

8. (Myers, 2011) Static analysis for java method

9. (Gerald Dynamic analysis for java class
Kaszuba,
2007).

10 (Hammad, Static analysis for java package depending
2016) on srcML tool

11. (Lanza, 2011) Visualization technique to visualize

software elements as a city in 3D view

12. (Lanza, M, Visualization technique

2001)

51

www.manaraa.com

Table 5
Our Methodology inputs and outputs vs others

Work Input Output
R Report Softwa
S o 4E:Package Class Method . E;Z re
S S O O metric
~n O = O = g
Proposed v oW v v v A \
Methodology
1. (Moreno, 2013) \ \
2. (Sridhara G. v \
e., 2010)
3. (McBurney, v \
2014)
4. (Sridhara G. v v \
e., 2010)
5. (Graham, v v
2004).
6. (Ellina, v v
2007).
7. (Alimucaj, v \
2009).
8. (Myers, v v
2011)
9. (Gerald v v
Kaszuba,
2007).
10. (Hammad, v \
2016)
11. (Lanza, 2011) v v
12. (Lanza, M, \
2001)

From Table 4, and 5, the previous summarization approaches focus in
generating one type of summary, the generated summary either provide a
report, this report is shown internally as a comment or externally which
depends on either syntax or the semantics of the summarized source code

52

www.manaraa.com

artifact. Works (2, 3, 4, and 5), aim to generate a natural language
description summary that provides a descriptive summarizes for Java
classes, or Java methods.

In work 2 the generated descriptive summary for Java class include a
general description that provides a general idea, and a description about the
behavior of each class, which are described as natural language sentences
depending on the selected methods. The evaluation of this research shows
that Expressiveness with the category: the summary is easy to read and
understand gives 68%. And Content adequacy with the category: Not
missing any information gives 45%.

On the other hand the generated class report for the proposed
approach provide a general description for the class, it also adds to the
general information the package name, and for each method summary
within the class report it adds the local method invocation, external method
invocation, local data with their type, and the attribute access, and their
type for each method. This shapes also the behavior of the class depending
on the provided services from methods of each class.

Works (3, 4, and 5), aims to summarize Java methods. The generated
descriptive method summaries is enhanced over those researches, the first
evaluation results from those researches was from Work 5, that gives the
conciseness rate with catagory has no unnecessary information 23%, and
content adequacy rate with the category not missing any information 36%.
The proposed methodology covered the method summary within the
generated class report, and also generates method call graph that is
supported with more semantic information’s that are hold within both
Cyclomatic complexity, and Hallstead complexity measures.

As mentioned previously the propoesd approach provides more than
one view to summarize source code artifacts. The second view presented
from the proposed methodology provides the class call graph that is
supported by class size information shaped in total number of methods, and
total number of attributes followed by the following class metrics: LOCM,
RFC, WMC, and NOC.

While the previous works (7,9, and 10), introduce the class call graph
just to provide the method invocation within each class, or the method
invocations with the number of these invocations. Also works (6,12, and
13), aim to show the class metrics such as LOCM, class coupling,
inheritance level metrics, number of methods within class, number of
attributes as a visualized shape, or systems without analyzing the source
code. But the proposed approach depends on analyzing the source code to
calculate the class metrics and then viewing them within the class call
graph for each class within the software.

The third view proposed by this approach provides the method control
flow graph to each method within each class of the software is supported

53

www.manaraa.com

with both Cyclomatic complexity, and Hallstead complexity measures, that
aims to measure method quality, while the previous approaches introduce
the method control flow graph in work 9, provides the control flow graph
for Java method, with the Cyclomatic complexity measure for each one.

By answering the research questions, and discussing the previous
approaches that aims to provide a descriptive summary for source code
artifacts, we find that the proposed methodology shows that generating a
descriptive summary for the following target software artifacts: packages,
classes, and methods in more than one view, make it more easy, and
understandable for who concern with the software, to understand the target
software in the way that he find it more suitable.

4.3 Conclusion and Future Work

A new approach for generating a descriptive summary for the source
code artifacts, in more than one view, is proposed. The generated
descriptive views consist of text and graph based information. Textual
based reports provide syntactic information project's packages and classes.
The class call-graph view is generated for each class with a number of
class's metrics, such as LOC, RFC, NOC, and WMC. The method control-
flow graph is produced for each method with Cyclomatic complexity
measures, and the Hallstead complexity measures. The main metrics in
both CCG and MCG hold the semantics information within both class and
method.

Summarizing the software and presenting the extracted information
for each package, class, and method in more than one view that covers
these granularities of the target source code, makes the source code more
understandable and maintainable. Two case studies are applied for the
proposed approach. The generated reports and views showed that they can
support software comprehension and can be seen as a reverse engineering
analysis for the source code.

We are planning to extend our work by enhancing the package report
to cover the relationships among the package's classes. Moreover,
measuring the effectiveness of the proposed approach, and implementing a
full feature GUI, for the proposed approach are other goals for the future
work.

54

www.manaraa.com

http://www.tcpdf.org

‘e o* inghialljl

& DARALMANDUMAH

Aipa s La Ll o cig B2 sy T

Automatic Generation of Descriptive Summary for Source Code Artifact Ulgusll

Wadlue solol «wglal

osaannndyl algoll

(WO yiao)doxo (sdlao dlo> ton> Gusléo

2016 NIV IF TR |

g0 :&990

1-86 1ol=aall

951089 :MD 8,

ol JSlw, ' Sgizall g9

English :axlll

> bo allw, 1auolell ax)all

&@ao asol> rasol=l

el wlwl)adl ésloc radsdl

ws,VI gl

Dissertations 10logleoll aclgd

ENWILTE TSV UICILVE Y SVIRIG FE S SW L UWATY. S ‘&aolgo
https://search.mandumah.com/Record/951089 ol

) ‘ cabgazo Jgixll gro .aoghinll > 2019 ©
plaziwlW 8slall 0ds dclb ol Juozi dhiSoy abbga=o ,uindl Jgi> grox Ol lode il si> Llol go g8sadl SVl (sle sy a>lio 85lodl 0in
_,|> 9|),ou| JQD wlxol o @b Cu i V9> (Es\Jg):LSJ\” _1,4).9J| 9| C.J),IJW 8§|9_o JI.o) Qng sl peiel)_ou| 9| Jnga.” 9| é.w.i.” &ioug Jnsd M».L”
oglaioll

www.manaraa.com

https://search.mandumah.com/Record/951089

Ladlall
AL 8y clinayll iy paile L)
Ghshadl) v Ll
2016 A drala

Cua ¢ Gl uaia Jlae 8 Alda¥) (e Ay daliue Gl padli (il
A5 Gl Adla) ¢ skl A je b agadly gl e JalEl)) malinll @ldia i o
Glia padl Ciag diph e ST a0 duhall oda 58 5 el agdl Alga ddyh
(i oo ST (8 5 Cargial) galipl

sadle alg Caagr galipll il Jlal) bl Badas e ALl o328 e
zriall padldll of Cua L Blad) 5 o Fmapd) il A gSal) aliiall Je 5 Jassy a
sle gyl (package, class) (o JS caal Al)l (e degens e Bilie s
eﬂ (el gdlly class call graph o alies classy dwsm)y dgaly oLy o3 el e
igals DA e gopiadl Gam method JS Jii 23 Gl &Ll L4y daaldll cluldl
S ol aal e Lay) ggas Jlly method control flow graph e xi dgesu,

gopdall XML cale adgs Pla e syl Joo Gllll Qi) dayla 340 5
XPath cldain) P e aldad 8 Cua cdaaps gty JSE e alid 23 (3l Caaglioal)
lmali alyall dd3all (e gapall (ailiadll (adlatu) Caag lanad &5 cldlai) e
el

Gy Uls Ay apjlde (o (pilide (el o dppall Auhall Gl o
ilaslral) (Ml 8 3ame (5S8 f ay Ll da il A8yl il pelal G clajlaal
5 At Aligue sae A Cpyshall Blaglaall s3a anaiiy dadaia d8yyhay malinll (e 3824l
code sl e Sl

XII

www.manaraa.com

Abstract
Automatic Generation of Descriptive Summary for Source Code
Artifact

Amani Al-Btoush
Mutah University, 2016

Source code summarization occupied a wide area of interest in the
field software engineering. Summarizing source code artifacts reduce time
and effort in the maintenance stage and provide easy way to comprehend
the software. This study proposes an automatic approach to summarize the
target source code in different views and levels.

The proposed approach applied static analysis techniques on the
source code to generate simple and easy use descriptive summary for
projects written in Java, and C programming languages. The proposed
summary is a collection of a set of reports that describe the project's
packages and classes. Moreover, for each class, a call graph for its methods
is generated with the values of the main class's metrics. Furthermore, a
control flow graph for each method is generated with the values of
method's metrics.

43 lXIIITwo experimental studies are applied on two different java
open source projects to test the proposed methodology. From these two
case studies, the proposed approach showed that it can be useful and
helpful in extracting complex information about the source code in a
systematic way and present it in abstract levels with different friendly ways
for the developers.

XIII

www.manaraa.com

http://www.tcpdf.org

‘e o* inghialljl

& DARALMANDUMAH

Aipa s La Ll o cig B2 sy T

Automatic Generation of Descriptive Summary for Source Code Artifact Ulgusll

Wadlue solol «wglal

osaannndyl algoll

(WO yiao)doxo (sdlao dlo> ton> Gusléo

2016 NIV IF TR |

g0 :&990

1-86 1ol=aall

951089 :MD 8,

ol JSlw, ' Sgizall g9

English :axlll

> bo allw, 1auolell ax)all

&@ao asol> rasol=l

el wlwl)adl ésloc radsdl

ws,VI gl

Dissertations 10logleoll aclgd

ENWILTE TSV UICILVE Y SVIRIG FE S SW L UWATY. S ‘&aolgo
https://search.mandumah.com/Record/951089 ol

) ‘ cabgazo Jgixll gro .aoghinll > 2019 ©
plaziwlW 8slall 0ds dclb ol Juozi dhiSoy abbga=o ,uindl Jgi> grox Ol lode il si> Llol go g8sadl SVl (sle sy a>lio 85lodl 0in
_,|> 9|),ou| JQD wlxol o @b Cu i V9> (Es\Jg):LSJ\” _1,4).9J| 9| C.J),IJW 8§|9_o JI.o) Qng sl peiel)_ou| 9| Jnga.” 9| é.w.i.” &ioug Jnsd M».L”
oglaioll

www.manaraa.com

https://search.mandumah.com/Record/951089

TABLE OF CONTENTS

Dedication I
ACKNOWLEDGMENTS II
ABBREVIATIONS I
TABLE OF CONTENTS v
LIST OF TABLES VI
LIST OF FIGURES VII
LIST OF EQUATIONS X
LIST OF ALGORITHM X1
ABSTRACT IN ARABIC XII
ABSTRACT IN ENGLISH XIII
CHAPTER
1 Introduction 1
1.1 Source Code Summarization 3
1.2 Aims and the importance of this study 5
1.3 Thesis claims 5
1.4 Contribution of this research 5
1.5 Thesis Structure 6
2 Review of Literature 7
2.1 Source Code Artifact 7
2.2 Software comprehension 10
2.3 Source Code Summarization 10
2.4 Software Metrics 12
2.5 Representing source code as XML 14
3 The Proposed Methodology 17
3.1 Tools Support the Proposed Methodology 17
3.2 Proposed Methodology Overview 17
3.3 SrcML tool 19
3.4 Package feature extractor 23
3.4.1 Pseudo Code for Package feature extractor 23
3.4.2 Example for Package report 24
3.5 C(lass feature extractor 25
3.5.1 Pseudo codes for Class feature extractor 25
3.5.2 Example for Class report 27
3.6 Class call graph visualizer 28
3.6.1 Class call graph visualizer pseudo codes 29
3.6.2 Class Call Graph (CCG) example 32
3.7 Method control flow graph visualizer 33
v

www.manaraa.com

3.7.1 Pseudo codes for method control flow graph visualizer 33

3.7.2 Method Control Flow Graph (MCFG) example 36
Experimental study and conclusion 38
4.1 Experimental study 38
4.1.1 Case studyl 39
4.1.1.1 Package Report 39
4.1.1.2 Class Report 40
4.1.1.3 Class Call Graph (CCG) 43
4.1.1.4 Method Control Flow Graph (MCFQG) 44
4.1.2 Case study?2 45
4.1.2.1 Package Report 45
4.1.2.2 Class Report 46
4.1.2.3 Class Call Graph (CCG) 46
4.1.2.4 Method Control Flow Graph (MCFQG) 47
4.2 Source code artifacts summarization approaches and results 48

discussions
4.3 Conclusion and Future Work 53
References 54
Appendix 1 59
Appendix 2 73

A%

www.manaraa.com

LIST OF TABLES

1 Languages or notations used for software artifacts 8
2 Software comprehension 9
3 Rules To draw Branch Statements in the Generated MCFG 35
4 Proposed Methodology vs others 50

5 Proposed Methodology inputs and outputs vs others 51

VI

www.manaraa.com

10
11

12

13
14
15
16

17

18

19
20
21

22
23
24
25
26
27
28

LIST OF FIGURES

Proposed Methodology Overview

FiglnspectorPanel Class for ArgoUML Open Source

Part of the Xml File Parsed From FiglnspectorPanel Class
from Figure 2

The Generated Package Report Format

Screenshot Example For dev.figinspector Generated Package
Report from ArgoUML Open Source as plug-in Library in
NetBeans Framework

The Generated Class Report Format

Screenshot Example from The Generated Class Report for
Class FiglnspectorPanel, and Class FigTree in package
dev.figinspector as plug-in Library in NetBeans Framework
Class Call Graph Format

The Generated Class Call Graph for FigTree Class from
Package dev.figinspector

Method Control Flow Graph Format

The Generated Method Control Flow Graph For addFig
Method from Class FiglnspectorPanel

The Target Software Artifacts from Junit Open Source Code
that are used to Generate the Descriptive Summary

The Generated Package Report for Junit Open Source

The Generated Class Report From Assert Class

The Generated Class Call Graph For Assert Class

The Generated Method Control Flow Graph For assertTrue
Method

The Target Software Artifacts from UMLGraph Open Source
Code that are used to Generate the Descriptive Summary
The generated Package Report For UMLgraph Open Source
Code packages

The Generated Class Report for ClassInfo Class

The Generated Class Call Graph for ClassInfo Class

The Generated Method Control Flow Graph For addRelation
Method

The Generated Class Report for AssertionFailedError Class
The Generated Class Report for ComparisonFailure Class
The Generated Class Report for RepetedTest Class

The Generated Class Report for TestResult Class

The Generated Class Report for AboutDialog Class

The Generated Class Report for ProgressBar Class

The Generated Class Report for LoadingTestController Class

VI

www.manaraa.com

18
20
22

24
24

27
28

32
32

36
37

39

40
43
44
44

45

46

46
47
48

59
59
59
60
60
61
61

29
30
31
32

33

34
35
36
37
38
39
40

41
42

43
44

45

46

47

48

49

50

51
52
53
54
55
56
57
58
59
60

The Generated Class Report for TestFailure Class

The Generated Class Report for Repeated Test Class

The Generated Class Report for TestSuite Class

The Generated Class Call Graph For AssertionFailedError
Class

The Generated Class Call Graph For ComparisonFailure
Class

The Generated Class Call Graph For TestFailure Class

The Generated Class Call Graph For TestResult Class

The Generated Class Call Graph For TestSuit Class

The Generated Class Call Graph For RepeatedTest Class
The Generated Class Call Graph For TestSuit Class

The Generated Class Call Graph For ProgressBar Class
The Generated Class Call Graph For LoadingTestCollector
Class

The Generated Class Call Graph For AboutDialog Class
The Generated Method Control Flow Graph For assertFalse
Method

The Generated Method Control Flow Graph For fail Method
The Generated Method Control Flow Graph For assertEquals
Method

The Generated Method Control Flow Graph For
assertNotNull Method

The Generated Method Control Flow Graph For assertNull
Method

The Generated Method Control Flow Graph For assertSame
Method

The Generated Method Control Flow Graph For
assertNotSame Method

The Generated Method Control Flow Graph For
assertNotSame Method

The Generated Method Control Flow Graph For failNotSame
Method

The Generated Class Report for ClassGraphHack Class
The Generated Class Report for ContextMatcher Class

The Generated Class Report for DevNullWriter Class

The Generated Class Report for ContexView Class

The Generated Class Report for RunDoclet Class

The Generated Class Report for TestUtils Class

The Generated Class Report for RunOne Class

The Generated Class Report for Shape Class

The Generated Class Report for Class RelationPattern

The Generated Class Call Graph for ContextMatcher Class

VIII

www.manaraa.com

62
62
63
63

64

64
65
65
66
66
67
67

68
68

69
69

70

70

71

71

72

72

73
73
73
74
74
75
75
76
76
76

61
62
63
64
65
66
67
68
69

70

71

72

73

74

75

76

The Generated Class Call Graph for ClassGraphHack Class
The Generated Class Call Graph for DevNullWriter Class
The Generated Class Call Graph for ContexView Class
The Generated Class Call Graph for RunDoc Class

The Generated Class Call Graph for TestUtils Class

The Generated Class Call Graph for RunOne Class

The Generated Class Call Graph for Shape Class

The Generated Class Call Graph for RelationPattern Class
The Generated Method Control Flow Graph For main
Method

The Generated Method Control Flow Graph For
matchesOnes Method

The Generated Method Control Flow Graph For addRelation
Method

The Generated Method Control Flow Graph For addToGraph

Method

The Generated Method Control Flow Graph For runDoclet
Method

The Generated Method Control Flow Graph For cleanFolder
Method

The Generated Method Control Flow Graph For cellBorder
Method

The Generated Method Control Flow Graph For
graphvizAttribute Method

IX

www.manaraa.com

77
77
78
78
79
79
80
80
81

81

2

o0

LIST OF EQUATIONS

1 Weighted Methods Per Class 12
2 Response For a Class 13
3 The response set for the class 13
4 Lack of Cohesion in Methods 13
5 Lack of Cohesion in Methods 13
6 Program vocabulary 14
7 Program length 14
8 Volume 14
9 Difficulty 14
10 Program effort 14
11 McCabe CC 14

www.manaraa.com

LIST OF ALGORITHMS

Package feature extractor Algorithm
Class information Algorithm
Class services Algorithm

Class Size Algorithm

Lack Of Cohesion Metric (LOCM) Algorithm
Response For Class Metric Algorithm
Weighted Methods per Class Algorithm
Number Of Children Algorithm (NOC)

. Class Call Graph Algorithm

10 Halstead complexity Algorithm

11. Method control flow graph Algorithm

O I R N

X1

23
25
26

29
29
30
30
31
31
33
34

www.manaraa.com

http://www.tcpdf.org

‘e o* inghialljl

& DARALMANDUMAH

Aipa s La Ll o cig B2 sy T

Automatic Generation of Descriptive Summary for Source Code Artifact Ulgusll

Wadlue solol «wglal

osaannndyl algoll

(WO yiao)doxo (sdlao dlo> ton> Gusléo

2016 NIV IF TR |

g0 :&990

1-86 1ol=aall

951089 :MD 8,

ol JSlw, ' Sgizall g9

English :axlll

> bo allw, 1auolell ax)all

&@ao asol> rasol=l

el wlwl)adl ésloc radsdl

ws,VI gl

Dissertations 10logleoll aclgd

ENWILTE TSV UICILVE Y SVIRIG FE S SW L UWATY. S ‘&aolgo
https://search.mandumah.com/Record/951089 ol

) ‘ cabgazo Jgixll gro .aoghinll > 2019 ©
plaziwlW 8slall 0ds dclb ol Juozi dhiSoy abbga=o ,uindl Jgi> grox Ol lode il si> Llol go g8sadl SVl (sle sy a>lio 85lodl 0in
_,|> 9|),ou| JQD wlxol o @b Cu i V9> (Es\Jg):LSJ\” _1,4).9J| 9| C.J),IJW 8§|9_o JI.o) Qng sl peiel)_ou| 9| Jnga.” 9| é.w.i.” &ioug Jnsd M».L”
oglaioll

www.manaraa.com

https://search.mandumah.com/Record/951089

2015

Mutah University
College of Graduate Studies

Automatic Generation of Descriptive Summary
for Source Code Artifact

Amani - Al-Btoush

By
Amani Abdel-Salam Al-Btoush

Supervisor:
Dr. Mustafa Hammad

A thesis Submitted to the College of Graduate Studies in
partial fulfillment of the requirements for the Master’s degree
in Computer science to the Department of Information
Technology, University of Mutah.

Automatic Generation of Descriptive Summary for Source Code Artifact

Mutah University, 2016

www.manaraa.com

o) Bl s

MUTAH UNIVERSITY a "‘"‘luﬁ ol dga daala
College of Graduate Studies 11.‘-"-“ ‘:"'“‘J'm 41."‘5
14) ad) zisai
danaly dlbuy 5l ol

g Tapasal Ghglad) Madlne) Y e Lasil gl ke 55

Automatic Generation of Discriptive Summary For source
Code Artifact

smbal) b faldl A2 e Jpeand) cdillid Yl
claglaal) Lin sl audl

/

E' _)L‘Jl

lutyy Wyt 26412016 dlas sana ibaas 3

\
fpac 26/412016 @l jpale i .2
/\
/

Tpe 26/4/2016 'E % Ml puaga a3
&

Q

[R5 26/4/2016 v%gé sl B8 sl 3

MUTAH-KARAK-JORDAN Y- I - e
Postal Code: 61710 61710: gyl ol
TEL :03/2372380-99 03/2372380-99: ¢yl
Ext. 5328-5330 5328-5330 =i
FAX:03/2375694 03/2 375694 (<S4
e-mail:) dgs@mutah.edujo sedgs@mutah.edu.jo s SN
http://www.mutah.edu.jo/gradest/derasat.htm i Y dadial)

www.manaraa.com

Dedication

This work is dedicated to all my family members, especially my
beloved husband Zeiad who gave me the strength and the courage to keep
moving forward and achieve my goals, and my children Hala, Tareq, and
leen. It is also dedicated to my parent for their great support.

www.manaraa.com

Acknowledgments

I thank Allah for giving me the ability to accomplish what I have
achieved in this thesis. I would like also to thank my supervisor, Dr
Mustafa Hammad, for his patience, support, inspiration and persistence
which has been the driving force that has enabled me to complete this
project, and for the valuable time he has spent in advising me step by step.

Amani Abdel-Salam Al-Btoush

II

www.manaraa.com

CC
CCG
DOM
IEEE
ISME
JavaML
LOCM
MCFG
00
NOC
RFC
SGML
srtcML
UML
W3C
WMC
XML

ABBREVIATIONS

McCabe’s Cyclomatic Complexity

Class Call Graph

Document Object Model

Institute of Electrical and Electronics Engineers
Integrated Software Maintenance Environment
Java Markup Language

Lack Of Cohesion Metric

Method Control Flow Graph

Object Oriented

Number Of Children algorithm

Response For Class Metric

the standard Generalized Markup Language
source code Markup Language

Unified Modeling Language

World Wide Web Consortium

Weighted Methods per Class

The Extensible Markup Language

II

www.manaraa.com

TABLE OF CONTENTS

Dedication I
ACKNOWLEDGMENTS II
ABBREVIATIONS I
TABLE OF CONTENTS v
LIST OF TABLES VI
LIST OF FIGURES VII
LIST OF EQUATIONS X
LIST OF ALGORITHM X1
ABSTRACT IN ARABIC XII
ABSTRACT IN ENGLISH XIII
CHAPTER
1 Introduction 1
1.1 Source Code Summarization 3
1.2 Aims and the importance of this study 5
1.3 Thesis claims 5
1.4 Contribution of this research 5
1.5 Thesis Structure 6
2 Review of Literature 7
2.1 Source Code Artifact 7
2.2 Software comprehension 10
2.3 Source Code Summarization 10
2.4 Software Metrics 12
2.5 Representing source code as XML 14
3 The Proposed Methodology 17
3.1 Tools Support the Proposed Methodology 17
3.2 Proposed Methodology Overview 17
3.3 SrcML tool 19
3.4 Package feature extractor 23
3.4.1 Pseudo Code for Package feature extractor 23
3.4.2 Example for Package report 24
3.5 C(lass feature extractor 25
3.5.1 Pseudo codes for Class feature extractor 25
3.5.2 Example for Class report 27
3.6 Class call graph visualizer 28
3.6.1 Class call graph visualizer pseudo codes 29
3.6.2 Class Call Graph (CCG) example 32
3.7 Method control flow graph visualizer 33
v

www.manaraa.com

3.7.1 Pseudo codes for method control flow graph visualizer 33

3.7.2 Method Control Flow Graph (MCFG) example 36
Experimental study and conclusion 38
4.1 Experimental study 38
4.1.1 Case studyl 39
4.1.1.1 Package Report 39
4.1.1.2 Class Report 40
4.1.1.3 Class Call Graph (CCG) 43
4.1.1.4 Method Control Flow Graph (MCFQG) 44
4.1.2 Case study?2 45
4.1.2.1 Package Report 45
4.1.2.2 Class Report 46
4.1.2.3 Class Call Graph (CCG) 46
4.1.2.4 Method Control Flow Graph (MCFQG) 47
4.2 Source code artifacts summarization approaches and results 48

discussions
4.3 Conclusion and Future Work 53
References 54
Appendix 1 59
Appendix 2 73

A%

www.manaraa.com

LIST OF TABLES

1 Languages or notations used for software artifacts 8
2 Software comprehension 9
3 Rules To draw Branch Statements in the Generated MCFG 35
4 Proposed Methodology vs others 50

5 Proposed Methodology inputs and outputs vs others 51

VI

www.manaraa.com

10
11

12

13
14
15
16

17

18

19
20
21

22
23
24
25
26
27
28

LIST OF FIGURES

Proposed Methodology Overview

FiglnspectorPanel Class for ArgoUML Open Source

Part of the Xml File Parsed From FiglnspectorPanel Class
from Figure 2

The Generated Package Report Format

Screenshot Example For dev.figinspector Generated Package
Report from ArgoUML Open Source as plug-in Library in
NetBeans Framework

The Generated Class Report Format

Screenshot Example from The Generated Class Report for
Class FiglnspectorPanel, and Class FigTree in package
dev.figinspector as plug-in Library in NetBeans Framework
Class Call Graph Format

The Generated Class Call Graph for FigTree Class from
Package dev.figinspector

Method Control Flow Graph Format

The Generated Method Control Flow Graph For addFig
Method from Class FiglnspectorPanel

The Target Software Artifacts from Junit Open Source Code
that are used to Generate the Descriptive Summary

The Generated Package Report for Junit Open Source

The Generated Class Report From Assert Class

The Generated Class Call Graph For Assert Class

The Generated Method Control Flow Graph For assertTrue
Method

The Target Software Artifacts from UMLGraph Open Source
Code that are used to Generate the Descriptive Summary
The generated Package Report For UMLgraph Open Source
Code packages

The Generated Class Report for ClassInfo Class

The Generated Class Call Graph for ClassInfo Class

The Generated Method Control Flow Graph For addRelation
Method

The Generated Class Report for AssertionFailedError Class
The Generated Class Report for ComparisonFailure Class
The Generated Class Report for RepetedTest Class

The Generated Class Report for TestResult Class

The Generated Class Report for AboutDialog Class

The Generated Class Report for ProgressBar Class

The Generated Class Report for LoadingTestController Class

VI

www.manaraa.com

18
20
22

24
24

27
28

32
32

36
37

39

40
43
44
44

45

46

46
47
48

59
59
59
60
60
61
61

29
30
31
32

33

34
35
36
37
38
39
40

41
42

43
44

45

46

47

48

49

50

51
52
53
54
55
56
57
58
59
60

The Generated Class Report for TestFailure Class

The Generated Class Report for Repeated Test Class

The Generated Class Report for TestSuite Class

The Generated Class Call Graph For AssertionFailedError
Class

The Generated Class Call Graph For ComparisonFailure
Class

The Generated Class Call Graph For TestFailure Class

The Generated Class Call Graph For TestResult Class

The Generated Class Call Graph For TestSuit Class

The Generated Class Call Graph For RepeatedTest Class
The Generated Class Call Graph For TestSuit Class

The Generated Class Call Graph For ProgressBar Class
The Generated Class Call Graph For LoadingTestCollector
Class

The Generated Class Call Graph For AboutDialog Class
The Generated Method Control Flow Graph For assertFalse
Method

The Generated Method Control Flow Graph For fail Method
The Generated Method Control Flow Graph For assertEquals
Method

The Generated Method Control Flow Graph For
assertNotNull Method

The Generated Method Control Flow Graph For assertNull
Method

The Generated Method Control Flow Graph For assertSame
Method

The Generated Method Control Flow Graph For
assertNotSame Method

The Generated Method Control Flow Graph For
assertNotSame Method

The Generated Method Control Flow Graph For failNotSame
Method

The Generated Class Report for ClassGraphHack Class
The Generated Class Report for ContextMatcher Class

The Generated Class Report for DevNullWriter Class

The Generated Class Report for ContexView Class

The Generated Class Report for RunDoclet Class

The Generated Class Report for TestUtils Class

The Generated Class Report for RunOne Class

The Generated Class Report for Shape Class

The Generated Class Report for Class RelationPattern

The Generated Class Call Graph for ContextMatcher Class

VIII

www.manaraa.com

62
62
63
63

64

64
65
65
66
66
67
67

68
68

69
69

70

70

71

71

72

72

73
73
73
74
74
75
75
76
76
76

61
62
63
64
65
66
67
68
69

70

71

72

73

74

75

76

The Generated Class Call Graph for ClassGraphHack Class
The Generated Class Call Graph for DevNullWriter Class
The Generated Class Call Graph for ContexView Class
The Generated Class Call Graph for RunDoc Class

The Generated Class Call Graph for TestUtils Class

The Generated Class Call Graph for RunOne Class

The Generated Class Call Graph for Shape Class

The Generated Class Call Graph for RelationPattern Class
The Generated Method Control Flow Graph For main
Method

The Generated Method Control Flow Graph For
matchesOnes Method

The Generated Method Control Flow Graph For addRelation
Method

The Generated Method Control Flow Graph For addToGraph

Method

The Generated Method Control Flow Graph For runDoclet
Method

The Generated Method Control Flow Graph For cleanFolder
Method

The Generated Method Control Flow Graph For cellBorder
Method

The Generated Method Control Flow Graph For
graphvizAttribute Method

IX

www.manaraa.com

77
77
78
78
79
79
80
80
81

81

2

o0

LIST OF EQUATIONS

1 Weighted Methods Per Class 12
2 Response For a Class 13
3 The response set for the class 13
4 Lack of Cohesion in Methods 13
5 Lack of Cohesion in Methods 13
6 Program vocabulary 14
7 Program length 14
8 Volume 14
9 Difficulty 14
10 Program effort 14
11 McCabe CC 14

www.manaraa.com

LIST OF ALGORITHMS

Package feature extractor Algorithm
Class information Algorithm
Class services Algorithm

Class Size Algorithm

Lack Of Cohesion Metric (LOCM) Algorithm
Response For Class Metric Algorithm
Weighted Methods per Class Algorithm
Number Of Children Algorithm (NOC)

. Class Call Graph Algorithm

10 Halstead complexity Algorithm

11. Method control flow graph Algorithm

O I R N

X1

23
25
26

29
29
30
30
31
31
33
34

www.manaraa.com

Ladlall
AL 8y clinayll iy paile L)
Ghshadl) v Ll
2016 A drala

Cua ¢ Gl uaia Jlae 8 Alda¥) (e Ay daliue Gl padli (il
A5 Gl Adla) ¢ skl A je b agadly gl e JalEl)) malinll @ldia i o
Glia padl Ciag diph e ST a0 duhall oda 58 5 el agdl Alga ddyh
(i oo ST (8 5 Cargial) galipl

sadle alg Caagr galipll il Jlal) bl Badas e ALl o328 e
zriall padldll of Cua L Blad) 5 o Fmapd) il A gSal) aliiall Je 5 Jassy a
sle gyl (package, class) (o JS caal Al)l (e degens e Bilie s
eﬂ (el gdlly class call graph o alies classy dwsm)y dgaly oLy o3 el e
igals DA e gopiadl Gam method JS Jii 23 Gl &Ll L4y daaldll cluldl
S ol aal e Lay) ggas Jlly method control flow graph e xi dgesu,

gopdall XML cale adgs Pla e syl Joo Gllll Qi) dayla 340 5
XPath cldain) P e aldad 8 Cua cdaaps gty JSE e alid 23 (3l Caaglioal)
lmali alyall dd3all (e gapall (ailiadll (adlatu) Caag lanad &5 cldlai) e
el

Gy Uls Ay apjlde (o (pilide (el o dppall Auhall Gl o
ilaslral) (Ml 8 3ame (5S8 f ay Ll da il A8yl il pelal G clajlaal
5 At Aligue sae A Cpyshall Blaglaall s3a anaiiy dadaia d8yyhay malinll (e 3824l
code sl e Sl

XII

www.manaraa.com

Abstract
Automatic Generation of Descriptive Summary for Source Code
Artifact

Amani Al-Btoush
Mutah University, 2016

Source code summarization occupied a wide area of interest in the
field software engineering. Summarizing source code artifacts reduce time
and effort in the maintenance stage and provide easy way to comprehend
the software. This study proposes an automatic approach to summarize the
target source code in different views and levels.

The proposed approach applied static analysis techniques on the
source code to generate simple and easy use descriptive summary for
projects written in Java, and C programming languages. The proposed
summary is a collection of a set of reports that describe the project's
packages and classes. Moreover, for each class, a call graph for its methods
is generated with the values of the main class's metrics. Furthermore, a
control flow graph for each method is generated with the values of
method's metrics.

43 lXIIITwo experimental studies are applied on two different java
open source projects to test the proposed methodology. From these two
case studies, the proposed approach showed that it can be useful and
helpful in extracting complex information about the source code in a
systematic way and present it in abstract levels with different friendly ways
for the developers.

XIII

www.manaraa.com

Chapter 1
Introduction

Overview

Keeping up with an enormous amount of source code that you need to
read and understand and the lack of summary commits that are made by
programmers, are the main challenges faced by today's developers. So in
order to help developers deal with this problem and in order to reduce the
cost, one solution is to use a simple text description, or simple graphical
representation view of the source code features that developers can easily
understand. This can also help developers to understand and validate
changes, trace changes to other software artifacts, and locate and re (assign)
bug reports.

In fact, automatic summarization is one of the oldest research areas
dating back to the late 1950s, which is noted in all programming languages
starting from FORTRAN that have provided a facility to write comments.
However, in recent years there has been an increasing attention to this field
from academia, government and industry. The reason is the rapid growth of
accessible information resources, mostly the World Wide Web, which has
resulted in a well-known problem of information overload (Mani, 1999).
The need for automated source code summary represents a main source for
system documentation and it is the core for source code understanding with
respect to maintenance, development and reducing reuse cost.

Software systems are developed in a number of different phases. The
first stage is the analysis of requirements followed by the design of the
system in order to meet the requirements. The next step involves writing
code in a programming language to implement the design specifications.
Finally, the system is tested before it is released for use by an end user.
Once the product has been shipped, the system enters a phase known as
maintenance. Software maintenance is one of the most time and effort
consuming. In software engineering, it means the modification of a
software product after delivery to correct faults, in order to improve the
performance or other features (Eddy, 2013). Developers during
maintenance need quick understand to the source code entities such as
(packages, classes or methods), since they cannot read the entire code of
large systems. So the identifying will occur efficiently and then they just
focus on the ones related to the task at hand. And since the most common
two activities to deal with software systems are searching and browsing,
the source code with thousands or millions lines of code, source code
documentation becomes important.

Also, modifications source code documentation takes place, which
are often documented with long messages. Those messages are a key

www.manaraa.com

component of software maintenance; they can help developers locate and
triage defects, validate changes, and understand modifications (Haiduc,
2010, & Haiduc S. J., 2010). In maintenance stage software change may
occur, so it affects another part of the source code. This requires spending
more effort and time from developers to find the affected lines of the
source code in order to understand the software.

Software changes are the basic and essential building blocks and
characteristic of software evolution in software development since the
software systems must respond to evolving platforms, requirements, and
other environmental pressures, and after the first version has shipped the
software continues to evolve, software evolution offers a different point of
view on the traditional about software maintenance: it indicates the idea of
essential change within an environment (Godfrey, 2008). Software
evolution appeared as an unexpected and unplanned phenomenon that was
observed in the original case study, in the evolution step, developers add
new features, correct previous mistakes and misunderstandings, and react
to the requirements, technologies, and knowledge volatility as it plays out
through time. And each change introduces a new feature or some other new
properties into software. During evolution, the programmers must
comprehend the existing program to be able to add new functionalities or
new properties to it (Rajlich, 2014).

In software development, similar problems are solved again and again,
so the best career is not to repeat solving of what has been already solved.
The best solution here is to reuse the same solution. Software reuse is the
use of software knowledge or the existing software in order to build new
software. It is also means the reuse of the code (Frakes, 2005). The
importance of software reuse comes because the need to reduce effort in
software maintenance and development. It also improves the quality of
software and decreases time to market (Poulin, 1993). So a good software
reuse process facilitates the increase of productivity, reliability, quality, and
the decrease of costs and implementation Time. Software systems and
components are specific reusable entities, mathematical function or an
object class. According to (Selby, 2005) found that a set of programs
consist of 32% reused code (not including libraries), so in order to reuse the
existing software it is important to understand and document source code.

Software comprehension is the main activity that simplifies
maintenance, reuse, code understanding and many other activities in
software engineering. (Storey, 2005), so the summary can be one of the
techniques that simplify software comprehension , which produce a text
that contains a large amount of the information, contained in the original
text, and do not exceed half of the original text. Program-comprehension
can be categorized into three models: top-down models, bottom-up models,
and integrated models. Comprehension according to the top-down model is

2

www.manaraa.com

working on deriving and formulating hypotheses about program purpose
while ignoring details, in order to evaluate them by the developers. Bottom-
up comprehension describes how a program is understood when a
programmer doesn’t have a knowledge about a program’s domain, here the
programmer checks the statements of a program and groups them into
semantic chunks. This then can be combined further until the developer has
an understanding of the general purpose of a program. The third model is
the integrated models combine top-down and bottom-up program
comprehension.

The developer typically uses top-down comprehension ever possible.
If a programmer has some knowledge about the domain, he/she will start
with top-down comprehension. When he encounters code fragments he/she
cannot explain using his domain knowledge, he/she will switch to the
bottom-up comprehension (Feigenspan, 2011). A better code understanding
by programmers and what is most efficient and effective can lead to many
kinds of improvements such as better tools, better maintenance processes
and guidelines, and documentation that support the cognitive process.

Static analysis i1s one of the most important areas that focus on
understanding the source code; it has the ability to analyze large amounts
of source code in considerably shorter amount of time than a human could.
Static analysis aims to statically test the text of a program, without
attempting to execute it; static analysis tools generate a first pass of the
code base and highlight areas that require more attention from a senior
developer.

Software metrics are one of the important aspects of software
engineering. Which acts as an indicator for software attribute. It also plays
an important role in the management of software projects. Software metric
is defined in the IEEE 1061 standard as a function that has an input
software data, and the output from these data is a single numerical value,
that can be explained as the degree to which software possesses a given
attribute that affects its quality. The goal is gaining objective, quantifiable
measurements and reproducible, which may have valuable applications in
budget planning, cost estimation, software debugging, quality assurance
testing, and optimizing personnel task assignments, so analyzing software
metric provide another way to understand the software from the produced
numerical value.

1.1 Source Code Summarization:

Source code, is a description of a computer program which can be
textual, readable, human readable, static, and fully executable that can be
compiled automatically into an executable form (Binkley, 2007). Source
code also can be defined as a mixed artifact that contains information that
enables the communication between the developers and the compiler. So

3

www.manaraa.com

the Automatic Source code summarization is the process of producing an
illustrative subset of the data, with a computer program that contains an
information of the entire source code. So in order to summarize the source
code there is a need to understand the source code.

When any software product has been developed, not only the
executable file or the source code is developed, but also a different kind of
documents are developed as a part of software engineering process such as
software requirement document, design document, test document, etc.
Good documents are very useful and they serve many purposes. The
documents that are produced in order to understand the source code may
be included within the source code, so here the software or the source code
have an Internal Documentation, or included outside the source code which
is called external documentation, where programmers keep their notes and
explanations in a separate document. For software developers, external
documentation is useful as it consists of information that describes the
problems with the program in order to solve them, or it can also focus on
documenting general description of the software code without being
concerned with its detail written. The main aim from external
documentation is to provide easy views for software code.

The Internal documentation which is explained by comments, these
block of comment for the Java and C/C++ programming language, can be
categorized in the following seven different types (Steidl, 2013):

1- Copyright comments: this type of comments is usually found at the
beginning of each file, it includes information about the license or
the copyright of the source code file.

2- Header comments: In Java, headers they found after the imports but
before the class declaration, it gives an overview about the
functionality of the class and provides information about, e. g., the
class author, the peer review status, or the revision number.

Member comments: they provide information for projects and for

API the developer. It describes the functionality of a method, being

located either before or in the same line as the member definition.

Inline comments: describe implementation decisions used within a

method body.

Section comments address several methods/fields together belonging

to the same functional aspect.

6- Code comments: this kind of comments is temporarily commented
for potential later reuse or debugging purposes.

7- Task comments: are developer notes containing a remaining to do, a
remark about an implementation hack, or a note about a bug that
needs to be fixed.

I

+

7

www.manaraa.com

1.2 Aims and the importance of this study

Software comprehension is an important field in the software
engineering; it is the core for many other activities such as reuse,
maintenance, development, and software changes. This requires software
engineers to spend a lot of time and effort to analyze and understand the
software. So summarizing software artifacts is the best solution that helps
the developer, maintainer, or any other one who aims to understand the
software.

Many of the previous researchers focus on summarizing source code
artifacts. So the commit produced from summarizing the source code just
provides summary information about part of the software, and doesn’t
cover the overall software. They either provide a summary that describes
the context of the artifact or they describe the semantic behind the class or
the method, by analyzing the stereotype.

From here the importance of this research comes, so it aims to give a
number of external descriptive views that summarize all the granularity
levels of the software (i.e.: method, class and the package) by providing a
general description that describes a quantity information for each artifact in
the software, and more detailed description that provide semantic
information that the syntax of each artifact holds for the selected artifact,
which are presented as a set of reports , also the method control flow graph
that views the method with some metrics that aim to measure the method,
and the class call graph which is also supported with the main class metrics
that measures the class quality.

1.3 Thesis claims

This thesis aims to introduce the proposed approach as a substitute
for many other approaches, since it has been used to provide a good
comprehension and understanding to the software engineers in order to
help them in many areas. So it will be easy to develop, maintain, reuse, and
analyze the software by reducing effort and time.

1.4 Contribution of this research

Although there are different ways introduced to understand the
software, automatic program comprehension is the most efficient and
wanted way. Internal and external documentation help during program
understanding and it is also still an important research area.

This research proposes a new approach which aims to summarize the
software system by analyzing the source code statically, in order to
determine its elements to understand the relations between those elements,
by generating a descriptive summary for the target software project.

www.manaraa.com

Since source code contains a lot of text so we parse source code to
xml tags using srcML (source code Markup Language) tool in order to
analyze the source code, because it adds much of the syntactic information
that is found in the Abstract Syntax Tree (Maletic, 2002). It also combines
text with both structural and textual information of the source code and
provide an easy way to extract information from the source code (Collard,
2002). All this makes the software comprehension directly supported, the
main contributions from the proposed work are summarized in the
following points:

e The target software artifacts are packages, classes and methods. And
the generated summaries are hydride of texts, graphs, and
numerical measures.

e The proposed methodology introduces a new approach that aims to
generate the both class call graph and method control flow graph
that represents a view for both class and method.

e There are also some other important contributions which aim at
answering the following research questions:

e Does the generated descriptive summary summarizes, describes, and
identifies the source code artifacts (package, class and method)
automatically?

e Does the generated descriptive summary reflect the developers
understanding of the software?

1.5 Thesis Structure

The remainder of this thesis is organized as follows: Chapter 2
discusses the summarization overview and reviews most of the work in the
field of source code artifact summarization techniques and the source code
comprehension techniques. This chapter consists of reviewing the
methodology of each work, and the results that were achieved and any open
source case study that was used. The source code artifacts descriptive
summary is discussed in Chapter 3 detail how the new method works, with
a number of examples for the generated descriptive summary. Chapter 4
provides the results of the new methodology, conclusion with a summary
of the research conducted and recommendations for future work.

www.manaraa.com

Chapter 2
Review of Literature
Introduction

In order to understand the source code many approaches were
introduced by following many methods and techniques. In general
programmer makes a mental map of the code by looking at and recognizing
various knowledge structures by including specific domain knowledge as
well as recognized structures in the source code. For example, when
programmer wants to understand a while loop in some code he will look
for the end of the loop, the condition to exit the loop and how the condition
is changed, since that is how while loops are structured in general. Then
the mental map of the code used to predict what will happen next in the
code.

As a starting point, simply the summary can be defined as producing a
text from one or more texts or list of sentences produced from one or more
documents that presents the main points in a concise form, which contains
a significant portion of the information in the original text(s), where it is
not longer than half of the original text(s). When this is done by the means
of a computer or automatically, it will be called Automatic Text
Summarization (Lloret, 2008).

2.1 Source Code Artifact

Correia in his work (de Figueiredo Correia, 2015), defines the
software artifacts as both the products of software development and the
things that developers work with. They may be themselves part of the final
set of deliverables to be built; they may describe or support the process of
developing software, and how it unfolds; and they are capable of describing
the function and design of software, and therefore be used in the creation of
other software artifacts.

Also (Juergens, 2011), defines software artifact as a file that is created
and maintained during the life cycle of a software system. It is part of the
system or captures knowledge about it. Examples include requirements
specifications, models and source code. From the point of view of analysis,
an artifact is regarded as a collection of atomic units. For natural language
texts, these units can be words or sentences, for source code tokens or
statements. For data-flow models such as Matlab/Simulink, atomic units
are basic model blocks such as addition or multiplication blocks.

While (Fisher, 2009), defines the software artifact as something
produced during the software development process. The ultimate goal of
the process is to produce an operational program that satisfies user’s needs.
From an end user’s perspective, this working program is the artifact of
primary interest. Customers also need documentation artifacts that tell them
how to use the software. This documentation can include users’ manuals,

7

www.manaraa.com

tutorials, and online program help. The major software engineering artifact
1s source code.

One of the active research topics in software maintenance is
summarizing software artifacts. It can said that the artifacts of a software
system includes sotware code and executable files, they also include a
hirarical diagrams of the software such as UML class diagram. Table 1,
summarizes the kinds of languages and notations that can be used for
different software artifacts.

Table 1:
Languages or notations used for software artifacts
Software Artifact Language or Notation
Requirements English and pictures, in electronic or paper form.
A formal specification language, such as SpecL
Specification where SpecL manages the logic and date

complexity, reporting ambiguities to the user, or
by applying a modeling notation, such as UML.
A structured software documentation format,

Design such as Javadoc, or a modeling notation, such as
UML
A programming language, such as Java or C++,
Implementation and the graphical program diagramming notation

also can apply.

According to Table 1, each phase of software engineering is defined
as an artifact, and for each phase it is possible to represent it as graphical
notation, structured documents, pictures, or programming language such as
C++ or java.

2.2 Software Comprehension

There are different methods to deal with the source code artifacts in
order to understand it.

e Some of them deal with the source code as a text since it contain a
natural language to introduce a document from it, other methods, to
introduce a document deal with the source code as fragments were they
invistigate the artifacts from them.

¢ Some methods aim to find some features.

e On the other hand some comprehension techniques aim to provide
quantities that aim to measure the software quality.

Program comprehension is popular area, the idea in this area
summarize in breaking a large program into more manageable slices or
smaller parts . So, instead of trying to comprehend the program as a whole,
the programmer can try to comprehend these slices. were a slice is a set of

8

www.manaraa.com

statements related by data and control flow. This way can be performed
programmatically and can be useful for debugging of computer programs
and during program comprehension (O’brien, 2003). Table 2, provides a
prife describtion to the methods proposed to comprehence the sotware:

Table 2
Software comprehension

Method Description
Visualization Visualization techniques aims to visualize the
techniques application using graphs, uml diagram or views (Pierre

Caserta, 2011).

Metrics are useful for analysis purposes, it aims to
Metrics trace | measure the software project in order to determine the
techniques complexity, software size and the qulity of the source

code (Sneed, 2006).

Quering techniques provide a mechanisim to extract the
Quering progrm artifacts and the relationship between them. This
techniques will help in visualization or take query results as an input

for further queries and analyses (G"irba, 2008).

It is designed to work with the documents that are
Text retrieval | written in natural language, and since source code
techniques contain natural language, it can be easily applied

Heuristic based
techniques

Dynamic
analysis
techniques

Static analysis
techniques

Fact collection

(McBurney, 2014).

This kind of techniques employed for learning or solving
problem solutions which are good enough for a given set
of data or conditions. It generates a light abstractive
summary to the extracted information from the source
code (Nazara, 2015).

It means the analysis of data gathered from a running
program, it exposes the system’s actual behavior so
provide an accurate picture of a software system. This
technique comprises the analysis of a system’s execution
through interpretation (for example using the Virtual
Machine in Java) (Hamou-Lhadj, 2009).

Is the analysis of computer software without performing
the actual execution of the programs built from that
software, it is usually applied to the analysis performed
with human analysis and by using automated software
tool (Gomes, 2009).

According to this technique developers working in the
source code in order to search, learn, review, implement
and propose facts about the source code in order to serve
numerous roles, such as predicting the amount of

9

www.manaraa.com

http://www.tcpdf.org

‘e o* inghialljl

& DARALMANDUMAH

Aipa s La Ll o cig B2 sy T

Automatic Generation of Descriptive Summary for Source Code Artifact Ulgusll

Wadlue solol «wglal

osaannndyl algoll

(WO yiao)doxo (sdlao dlo> ton> Gusléo

2016 NIV IF TR |

g0 :&990

1-86 1ol=aall

951089 :MD 8,

ol JSlw, ' Sgizall g9

English :axlll

> bo allw, 1auolell ax)all

&@ao asol> rasol=l

el wlwl)adl ésloc radsdl

ws,VI gl

Dissertations 10logleoll aclgd

ENWILTE TSV UICILVE Y SVIRIG FE S SW L UWATY. S ‘&aolgo
https://search.mandumah.com/Record/951089 ol

) ‘ cabgazo Jgixll gro .aoghinll > 2019 ©
plaziwlW 8slall 0ds dclb ol Juozi dhiSoy abbga=o ,uindl Jgi> grox Ol lode il si> Llol go g8sadl SVl (sle sy a>lio 85lodl 0in
_,|> 9|),ou| JQD wlxol o @b Cu i V9> (Es\Jg):LSJ\” _1,4).9J| 9| C.J),IJW 8§|9_o JI.o) Qng sl peiel)_ou| 9| Jnga.” 9| é.w.i.” &ioug Jnsd M».L”
oglaioll

www.manaraa.com

https://search.mandumah.com/Record/951089

with both Cyclomatic complexity, and Hallstead complexity measures, that
aims to measure method quality, while the previous approaches introduce
the method control flow graph in work 9, provides the control flow graph
for Java method, with the Cyclomatic complexity measure for each one.

By answering the research questions, and discussing the previous
approaches that aims to provide a descriptive summary for source code
artifacts, we find that the proposed methodology shows that generating a
descriptive summary for the following target software artifacts: packages,
classes, and methods in more than one view, make it more easy, and
understandable for who concern with the software, to understand the target
software in the way that he find it more suitable.

4.3 Conclusion and Future Work

A new approach for generating a descriptive summary for the source
code artifacts, in more than one view, is proposed. The generated
descriptive views consist of text and graph based information. Textual
based reports provide syntactic information project's packages and classes.
The class call-graph view is generated for each class with a number of
class's metrics, such as LOC, RFC, NOC, and WMC. The method control-
flow graph is produced for each method with Cyclomatic complexity
measures, and the Hallstead complexity measures. The main metrics in
both CCG and MCG hold the semantics information within both class and
method.

Summarizing the software and presenting the extracted information
for each package, class, and method in more than one view that covers
these granularities of the target source code, makes the source code more
understandable and maintainable. Two case studies are applied for the
proposed approach. The generated reports and views showed that they can
support software comprehension and can be seen as a reverse engineering
analysis for the source code.

We are planning to extend our work by enhancing the package report
to cover the relationships among the package's classes. Moreover,
measuring the effectiveness of the proposed approach, and implementing a
full feature GUI, for the proposed approach are other goals for the future
work.

54

www.manaraa.com

http://www.tcpdf.org

‘e o* inghialljl

& DARALMANDUMAH

Aipa s La Ll o cig B2 sy T

Automatic Generation of Descriptive Summary for Source Code Artifact Ulgusll

Wadlue solol «wglal

osaannndyl algoll

(WO yiao)doxo (sdlao dlo> ton> Gusléo

2016 NIV IF TR |

g0 :&990

1-86 1ol=aall

951089 :MD 8,

ol JSlw, ' Sgizall g9

English :axlll

> bo allw, 1auolell ax)all

&@ao asol> rasol=l

el wlwl)adl ésloc radsdl

ws,VI gl

Dissertations 10logleoll aclgd

ENWILTE TSV UICILVE Y SVIRIG FE S SW L UWATY. S ‘&aolgo
https://search.mandumah.com/Record/951089 ol

) ‘ cabgazo Jgixll gro .aoghinll > 2019 ©
plaziwlW 8slall 0ds dclb ol Juozi dhiSoy abbga=o ,uindl Jgi> grox Ol lode il si> Llol go g8sadl SVl (sle sy a>lio 85lodl 0in
_,|> 9|),ou| JQD wlxol o @b Cu i V9> (Es\Jg):LSJ\” _1,4).9J| 9| C.J),IJW 8§|9_o JI.o) Qng sl peiel)_ou| 9| Jnga.” 9| é.w.i.” &ioug Jnsd M».L”
oglaioll

www.manaraa.com

https://search.mandumah.com/Record/951089

References

Abid, N. J. (2015, September). Using stereotypes in the automatic
generation of natural language summaries for C++ methods. /EEE
International Conference on. IEEE, pp. 561-565.

Aguiar, A. G. (2004). JavaML 2.0: Enriching the markup language for Java
source code. XML: Aplicagoes e Tecnologias Associadas, pp. 1-12.

Alimucaj, A. (2009). http://eclipsefcg.sourceforge.net/. Retrieved March
27,2016, from sourceforge.

Allen, F. E. (1970, July). Control flow analysis. ACM Sigplan Notices, pp.
1-19.

Binkley, D. (2007). Source code analysis: A road map. Future of Software
Engineering. IEEE Computer Society.

Buse, R. P. (2010). Automatically documenting program changes.
Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM.

Chawla, S., & Kaur, G. (2013). Comparative Study of the Software Metrics

for the complexity and Maintainability of Software

Development. International Journal of Advanced Computer Science &

Applications, 4.

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object

oriented design. Software Engineering, IEEE Transactions on, 20(6),

pp.476-493.

CollabNet.(2001).http://argouml.tigris.org/source/browse/argouml/trunk/m
odules/dev/src/org/argouml/dev/figinspector/. Retrieved March 27,
2016, from argouml.

Collard, M. D. (2011, September). Lightweight Transformation and Fact
Extraction with the sccML Toolkit. IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM'11),
pp. 173-184.

Collard, M. L. (2002). Supporting document and data views of source code.
ACM symposium on Document engineering.

Cortés-Coy, L. F. (2014). On Automatically Generating Commit Messages
via Summarization of Source Code Changes. IEEE 14th International
Working Conference on. IEEE.

Daumé Iii, H. J. (2009). Search-based structured prediction. Machine
learning 75.3.

de Figueiredo Correia, F. A. (2015). Documenting Software With Adaptive
Software Artifacts. PhD Thesis. UNIVERSIDADE DO PORTO.

Eddy, B. P. (2013)). Evaluating source code summarization techniques:
Replication and expansion." Program Comprehension (ICPC). IEEE
21st International Conference on. IEEE.

55

www.manaraa.com

Ellina, P. (2007). http://blog.prashanthellina.com/generating-call-graphs-
for-understanding-and-refactoring-python-code.html. Retrieved
March 27, 2016, from prashanthellina.

Feigenspan, J. (2011). Program Comprehension of Feature-Oriented
Software Development. International Doctoral Symposium on
Empirical Software Engineering, p. Vol. 21.

Fisher, G. (2009). Software Engineering Formal and Practical. California
Polytechnic State University.

Frakes, W. a. (2005, July 31). Software Reuse Research: Status and Future.
IEEE Transactions on Software Engineering, pp. 529-536.

Fujita, H. a. (2007). Experience of XML-based source code representation
with parsing actions. New Trends in Software Methodologies, Tools
and Techniques, pp. 330-339.

G 1irba, M. V. (2008). Query Technologies and Applications for Program
Comprehension. The 16th IEEE International Conference on
Program Comprehension.

Gerald Kaszuba, e. a. (2007). http://pycallgraph.slowchop.com/en/master/.
Retrieved March 27, 2016, from slowchop.

Godfrey, M. W. (2008, September). The past, present, and future of
software evolution. Frontiers of Software Maintenance, IEEE, pp.
129-138.

Gomes, . e. (2009). An overview on the static code analysis approach in
software development. Faculdade de Engenharia da Universidade
do Porto, Portugal.

Haiduc, S. e. (2010). On the use of automated text summarization
techniques for summarizing source code. 17th Working Conference
on. IEEE.

Haiduc, S. J. (2010). Supporting program comprehension with source code
summarization. ACM/IEEE International Conference on Software
Engineering.

Haiduc, S. J. (2013). Supporting program comprehension with source code
summarization. Program Comprehension (ICPC).

Halstead, M. H. (1977). Elements of Software Science. Amsterdam:
Elsevier North-Holland.

Hammad, M. A. (2016, May). Summarizing Services of Java Packages.
Lecture Notes on Software Engineering.

Hamish Graham, H. Y. (2004, January.). A Solar System Metaphor for 3D
Visualisation of Object Oriented Software Metrics. In Proceedings of
the 2004 Australasian symposium on Information Visualisation, pp.
53-59.

Hamou-Lhadj, A. (2009). Techniques to Simplify the Analysis of
Execution Traces for Program Comprehension. 11,12.

56

www.manaraa.com

Juergens, E. (2011). Why and how to control cloning in software artifacts.
Technische Universitidt Miinchen.

Kanellopoulos, Y. a. (2004). Data mining source code to facilitate program
comprehension: experiments on clustering data retrieved from C++
programs. [2th IEEE International Workshop on. IEEE, pp. 214-
223.

LaToza, T. D. (2007, September). Program comprehension as fact finding.
the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations
of software engineering, pp. 361-370.

Lanza, R. W. (2011). Visualizing Software Systems as Cities. in
Proceedings of the 33rd International Confernce on Software
Engieering,ser. ICSE, pp. 551-560.

License, G. (2014, October 29). http://www.umlgraph.org/download.html.
Retrieved January 12, 2016, from umlgraph.

Lloret, E. (2008). Text summarization: an overview. Paper supported by the
Spanish Government under the project TEXT-MESS (TIN2006-
15265-C06-01).

Maletic, J. L. (2002). Source code files as structured documents . 10¢th
International Workshop on. IEEE, pp. 289-292.

Mamas, E. a. (2000). Towards portable source code representations using
XML. Seventh Working Conference on. IEEE, pp. 172-182.

Mani, I. a. (1999). Advances in automatic text summarization. Cambridge:
MA: MIT press.

McBurney, P. W. (2014). Automatic documentation generation via source
code summarization of method context. the 22nd International
Conference on Program Comprehension. ACM.

Moreno, L. (2014, May). Summarization of complex software artifacts.
36th International Conference on Software Engineering. ACM, pp.
654-657.

Moreno, L. e. (2013). Automatic generation of natural language summaries
for java classes. IEEE 21st International Conference on. IEEE.

Moreno, L. e. (2013). Jsummarizer: An automatic generator of natural
language summaries for java classes. IEEE 21st International
Conference on. IEEE.

Myers, T. D. (2011). Visualizing call graphs. [IEEE Symposium on Visual

Languages and Human-Centric Computing.

Nazara, N. Y. (2015). Summarizing Software Artifacts: Classifications,
Methods, and Applications. oscar-lab.

O’brien, M. P. (2003). Software comprehension—a review & research
direction. Department of Computer Science & Information Systems
University of Limerick, Ireland, Technical Repor.

57

www.manaraa.com

Pierre Caserta, O. Z. (2011, July). Visualization of the Static aspects of
Software: a survey. I[EEE TRANSACTIONS ON VISUALIZATION
AND COMPUTER GRAPHICS.

Poulin, J. S. (1993). The business case for software reuse. IBM Systems
Journal, pp. 567-594.

Rajlich, V. (2014, May). Software evolution and maintenance. Future of
Software Engineering. ACM, pp. 133-144.

Santhana Megala, S. A. (2014). Enriching Text Summarization using Fuzzy
Logic. International Journal of Computer Science & Information
Technologies.

Selby, R. W. (2005). Enabling reuse-based software development of large-
scale systems. Software Engineering, IEEE Transactions on, 31(6),
PP. 495-510.

Slashdot. (2016). https://sourceforge.net/projects/junit/files/junit/3.8.1/.
Retrieved January 10, 2016, from sourceforge.

Sneed, H. M. (2006, oct 30). Understanding software through numbers: A
metric based approach to program comprehension. Journal of
Software Maintenance and Evolution: Research and Practice, pp.
405 —419.

Sonal Chawla, G. K. (2013). Comparative Study of the Software Metrics
for the complexity and Maintainability of Software Development.
(IJACSA) International Journal of Advanced Computer Science and
Applications, pp. Vol. 4, No. 9.

Sridhara, G. (2012). Automatic Generation Of Descriptive Summary
Comments For Method In Object Orinted programs.

Sridhara, G. e. (2010). Towards automatically generating summary
comments for java methods. IEEE/ACM international conference
Auomated software engineering. ACM.

Sridhara, G. L.-S. (2011). "Generating parameter comments and
integrating with method summaries. Program Comprehension
(ICPC), 2011 IEEE 19th International Conference on. IEEE.

Stanford NLP Group. (2009). Stanford log-linear part of speech tagger.
Stanford NLP Group.

Steidl, D. B. (2013). Quality analysis of source code comments. Program
Comprehension (ICPC), 2013 IEEE 21st International Conference
on. IEEE.

Storey, M.-A. (2005). Theories, methods and tools in program
comprehension: Past, present and future. IWPC 2005. Proceedings.
13th International Workshop on. IEEE, pp. 181-191.

Tjortjis, C. L. (2003, May). Facilitating program comprehension by mining
association rules from source code. //th IEEE International
Workshop , pp. 125-132.

58

www.manaraa.com

Wilde, N. B. (2003). A comparison of methods for locating features in
legacy software. Journal of Systems and Software, pp. 105-114.

Wong, E. T. (2015). CloCom: Mining existing source code for automatic
comment generation. Software Analysis, Evolution and
Reengineering (SANER), 2015 IEEE 22nd International Conference.

59

www.manaraa.com

http://www.tcpdf.org

‘e o* inghialljl

& DARALMANDUMAH

Aipa s La Ll o cig B2 sy T

Automatic Generation of Descriptive Summary for Source Code Artifact Ulgusll

Wadlue solol «wglal

osaannndyl algoll

(WO yiao)doxo (sdlao dlo> ton> Gusléo

2016 NIV IF TR |

g0 :&990

1-86 1ol=aall

951089 :MD 8,

ol JSlw, ' Sgizall g9

English :axlll

> bo allw, 1auolell ax)all

&@ao asol> rasol=l

el wlwl)adl ésloc radsdl

ws,VI gl

Dissertations 10logleoll aclgd

ENWILTE TSV UICILVE Y SVIRIG FE S SW L UWATY. S ‘&aolgo
https://search.mandumah.com/Record/951089 ol

) ‘ cabgazo Jgixll gro .aoghinll > 2019 ©
plaziwlW 8slall 0ds dclb ol Juozi dhiSoy abbga=o ,uindl Jgi> grox Ol lode il si> Llol go g8sadl SVl (sle sy a>lio 85lodl 0in
_,|> 9|),ou| JQD wlxol o @b Cu i V9> (Es\Jg):LSJ\” _1,4).9J| 9| C.J),IJW 8§|9_o JI.o) Qng sl peiel)_ou| 9| Jnga.” 9| é.w.i.” &ioug Jnsd M».L”
oglaioll

www.manaraa.com

https://search.mandumah.com/Record/951089

Appendix 1
The Generated Summary for Case Study 1

1 Class AssertionFailedError report
2
3 Class AssertionFailedError declared in package framework as public, has a super elass Error.
4 This class provide the following services:
5
6 The service is: AssertionFailedError.
7
8 The service is: AssertionFailedError. The service uses local data:(message with type String).
9 This service use method: super.

10

Figure 20
The Generated Class Report for AssertionFailedError Class

1 Class ComparisonFailura report

2

3

2 Class ComparisonFailure declared in packageframewaork as public, has a super class AssertionFailedError.

5 This class provide the following serviees:

6

; The serviceis: getMessage. This service returns String. The service uses the attributes:(fExpected with type String,

9 fActual withtype String).

10 This service use methods: format, min, charAt, substring, and length.

Figure 21
The Generated Class Report for ComparisonFailure Class
1 Class RepeatedTest report:
2 Class RepeatedTest declared in package extension as public. Has a super class Canwvas.
3 This class provide the following services:
4
5 The service is: countTestCases. This service returns int. The service use attribute: (ftimesRepeat with
6 type int).
7 This service use local method: countTestCases.
8 The service is: run. This service returns void. The service uses local data :(result with type TestResult).
9 The service use attribute: (ftimesRepeat with typeint).
10 This service use local method: run.
11 This service use method: shouldStop.
12
13 Th i is: toStri Thi i i
e service is: toString. is service returns String.

14 This service use local method: toString.

Figure 22
The Generated Class Report for RepetedTest Class

60

www.manaraa.com

0NN AW

Class TestResult report

Class TestResult declaredin package framework as public, has a superclass Object.
This class provide the following services:

The service is: addError. This service returns void. The service use the attributes:(fFailures with type Vector). The
service uses local data:{test with type Test, and t with type Throwable).

This service use local method: clonelisteners.

This service use methods: hasMoreElements, nextElement, addError, and elements.

The service is: addFailure. This service returns void. The service use the attributes:(fFailures with type Vector). The
service uses local data:{test with type Test, and t with type AssertionFailedError).

This service use local method: clonelisteners.

This service use methocdls: TestFailure , hasMoreElements, elements, and addFailure.

The service is: addLlistener. This service returns void. The service use the attributes:(fListeners with type Vector).
The service uses local data:{listener with type TestListener).
This service use method: addElement.

The service is: addLlistener. This service returns void. The service use the attributes:(fListeners with type Vector).
The service uses local data:(listener with type TestListener).
This service use method: removeElement.

The service is: clonelisteners. This service returns vector. The service use the attributes:(fListeners with type
Vector).
This service use method: clone.

The service is: endTest. This service returns void. The service use the attributes:(fListeners with type Vector). The
service uses local data:(listener with type TestListener).

This service use local method: clonelisteners. And endTest.

This service use method: elements, hasMoreElements, and nextElement.

The service is: errorCount. This service returns int. The service use the attributes:(fErrors with type Vector). The
service uses local data:{listener with type TestListener).
This service use method: size.

The service is: errors. This service returns Enumeration. The service use attributes: (fErrorswith type
Vector). The service uses local data:(test with type Test, and t with type Throwable).
This service use methods: elements.

The service is: failureCount. This service returns int. The service use local attributes:(fFailures with type
Vector).
This service use method: size.

The service is: failures. This service returns Enumeration. The service use local attributes:{fFailures with
type Vector).
This service use method: elements.

The service is: run. This service returns void. The service use local data:(test with type TestCase).
This service use local method: runProtected.
This service use method: Protectable, Throwable, runBare, and endTest.

The service is: runCount. This service returns void. The service use the attributes:(test with type).
This service use local method: clonelisteners, and startTest.
This service use method: countTestCases, elements, hasMoreElements, and nextElement.

The service is: stop. This service returns void. The service use the attribute :(fStop with type Vector).
The service is: wasSuccessful. This service returns boolean. The service use local data :(test with type

Vector).
This service use local method: failureCount, errorCount.

Figure 23
The Generated Class Report for TestResult Class

01NN AW~

Class AboutDialog report:

Class AboutDialog declared in package swingui as public. Has a super class JDialog.
This class provide the following services:

The service is: createlogo. This service returns JLabel.
This service use method: getlconResource, and JLabel.

Figure 24
The Generated Class Report for AboutDialog Class

61

www.manaraa.com

0NN WA W=

Class ProgressBar report:

Class ProgressBar declared in package awtui as public Has a superclass Canvas.
This class provide the following services:

The service is: getStatusColor. This service returns Color. The service use attribute: (fError with type
boolean).

9 The service is: paint. This service returns void. The service uses local data :(g with type Graphics).
10 This service use local method: paintBackground, paintStatus.
11
12 The service is: paintStatus. This service returns void. The service uses local data :(g with type Graphics).
13 This service use methods: setColor, getBounds, fillRect, and drawLine.
14
15 The service is: paintStep. This service returns void. The service uses local data :(startX with type int,
16 and endX with type int).
17 This service use method: repaint.
18
19 The service is: reset. This service returns void. The service uses attributes :(fProgressX with type int,
20 fProgress with type int, and fError with type boolean).
21 This service use local method: paint.
22
23 The service is: scale. This service returns int. The service uses local data :(value with type int). The
24 service uses attributes :(fTotal with type int).
25 This service use method: max, and getBounds.
26
27 The service is: setBounds. This service returns void. The service uses local data :(x with type int, y with
28 type int, w with type int, and h with type int). The service uses attributes :(fProgressX with type int,
29 and fProgress with type int).
30 This service use local method: setBounds, and scale.
31 This service use method: super.
32
33 The service is: start. This service returns void. The service uses local data :(total with typeint). The
34 service use attribute: (fError with type boolean).
35 This service use local method: reset.
36
37 The service is: step. This service returns void. The service uses local data :(successful with type
38 boolean). The service use attribute: (fProgress with type int, fProgressX with typeint , and fError with
39 type boolean).
40 This service use local method: paintStep.
Figure 25
The Generated Class Report for ProgressBar Class
1 Class LoadingTestCollector report:
2
3 Class LoadingTestCollector declared in package runner as public. has a superclass ClassPathTestCollector.
4 This class provide the following services:
5
6 The service is: isTestClass. This service returns boolean. The service use local data : (classFileName with type String).
7 This service use local method: classFromFile, and isTestClass.
8 This service use method: endsWith.
(1)0 The service is: isTestClass. This service returns boolean. The service uses local data :(testClass with type Class).
This service use local method: hasSuiteMethod, and hasPublicConstructor.
}; This service use method: isAssignableFrom, and isPublic.
13 The service is: hasSuiteMethod. This service returns boolean. The service uses local data :(testClass with type Class).
14 This service use method: getMethod.
15
16 The service is: hasPublicConstructor. This service returns boolean. The service uses local data :(testClass with type
17 Class).
18 This service use method: TestSuite.

Figure 26
The Generated Class Report for LoadingTestController Class

62

www.manaraa.com

Class TestFailure report:

1
2 Class TestFailure declaredin package framework as public, has a super class Object.
i This class provide the following services:
5 The service is: failedTest. This service returns Test.
6
7 The service is: thrownException. This service returns Throwable.
8
9 The service is: toString. This service returns String.
This service use local method: toString.
i(l) This service use methods: StringBuffer, and append.
12 The service is: trace. This service returns String.
13 This service use local method: toString.
14 This service use methods: String\Writer, PrintWriter, printStackTrace, and getBuffer.
15
16 The service is: exceptionMessage. This service returns String.
17 This service use local method: thrownException.
18 This service use methods: getMessage.
19 The service is: isFailure. This service returns boelean.
20 This service use local method: thrownException.
Figure 27
The Generated Class Report for TestFailure Class
1 Class RepeatecdTest report:
2
3 Class RepeatecdTest declared in package extension as public. Has a super class Canvas.
4 This class provide the following services:
5 The service is: countTestCases. This service returns int. The service use attribute: (ftimesRepeat with
6 type int).
7 This service use local method: countTestCases.
8
9 The service is: run. This service returns void. The service uses local data :(result with type TestResult).
10 The service use attribute: (ftimesRepeat withtypeint).
This service use local method: run.
11 . .
12 This service use method: shouldStop.
13
14 The service is: toString. This service returns String.
15

This service use local method: toString.

Figure 28
The Generated Class Report for Repeated Test Class

63

www.manaraa.com

1 Class TestSuite report:
2
3 Class TestSuite declaredin package framework as public.
4 This class provide thefollowing services:
5
6 The service is: addTest. This service returns void. The service use local data :(test with type Test)
This service use method: addElement.
7
8 The service is: addTestSuite. This service returns void. The service use local data :{testClass with type Class)
9 This service use local method: addTest.
10
11 The service is: addTestMethod. This service returns void. The service use local data :(m with type Method, names with
12 type Vector, and theClass with type Class)
13 This service use local method: addTest, getName, and isPublicTestMethod.
14 This service use methods: contains, isTestMethod, and addElement.
15 The service is: createTest. This service returns public. The service use local data :(theClass with type Class, name with
16 type String)
17 This service use local method: warning.
18 This service use methods: newlInstance, and getParameterTypes.
19
20 The service is: exceptionToString. This service returns String. The service use local data :(t with type Throwable)
21 This service use local method: toString.
29 This service use methods: printStackTrace.
23 The service is: countTestCases. This service returns int.
24 This service use local method: countTestCases.
25 This service use methods: hasMoreElements, and nextElement.
26
27 The service is: isPublicTestMethod. This service returns boolean. The service use local data:(m with type Method)
28 This service use local method: isTestMethod.
29 This service use methods: isPublic.
30 The service is: isTestMethod. This service returns boolean. The service use local data :{m with type Method)
31 This service use local method: getName.
32 This service use methods: getReturnType, and startsWith.
33
34 The service is: testCount. This service retumns int.
35 This service use method: size.
36
37 The service is: toString. This service returns String. The service use local data :{m with type Method, names with type
38 Vector, and theClass with type Class)
39 This service use local method: getName, and toString.
40
41 The service is: warning. This service returns Test. The service use local data :(message with type String)
This service use method: fail.
42

Figure 29
The Generated Class Report for TestSuite Class

Class Name: AssertionFailedError

. AssertionFailedError
Class size:

\
\
---------------- \
of methods: 2. \
of attributes:0. \
\
\
v
\
\
\
\
\
\
3

super

Figure 30
The Generated Class Call Graph For AssertionFailedError Class

64

www.manaraa.com

Class Name: ComparisonFailure
cl ize:
i | min
of methods: 1. ",-"
of attributes:2. -
................ 'J‘—
LOCM :-3 getMessage p=-====== 2 =} format
H=H n-.‘._
RFC:5. = . “--...,_’
WMC:250. N . Ny
~ it
NOC:0. A =
S o charAt
~ ~
\\\\ \\n.‘
~
S *\\
\\\ \'\
~ ~,
}‘\ length
\\\.
N
~
B substring
Figure 31

The Generated Class Call Graph For ComparisonFailure Class

Class Name testFailure

Class size:

................ trace
of methods: 5.
of attributes:2.
exepressionMessage | toStrig ;
LOCM : 3. AN T
RFC: 9. \\\ "=~ append
WMC:90. “_-.. AN
NOC:0. AN
isFailure > thrownexcepression \\\
N T —————
| getBuffer
e
Figure 32

The Generated Class Call Graph For TestFailure Class

65

www.manaraa.com

failureCount

wasSuccesfull

Class Name: TestResult

Class size:

of methods: 17.
of attributes:5. ¢ 4

4
................ r
’
errorCount
LOCM :34.

=3 addElements

RFC:23.
WMC:133. addListener

NOC:0. - -
-~ —'i=
/ addError _(:l hasMoreElements ::
/ l=::-:_3' A*l‘ll
B £
runProtected SImors |E--Co——TTTT T T | > elements I
—] I] 1o
addFailure | S —. [!
P
______________________ -
I hrndyetyntyivuivel shyslyslystyetyiyeiveiyslysiyslyststysiveivatfil 1

endTest _S
¥

clonelisteners

removelListener

i ¥. >
1 removeElement I
(]

clone

Figure 33
The Generated Class Call Graph For TestResult Class

fail

Class Name: TestSuit

newlnstance

Class size: warning L -
— — > getParameterTypes
of methods: 15. createTest .1~ _

of attributes:2.

L

~,

- getReturnType

isTestMethod |-["

LOCM :125. "t~

RFC: 29. T A startswith \-
WMC:759. - L

NOC:0. isPublicTest

Method T==3i isPublic

toString E] T

| addTestMethod |-|--->} contains
countTestCases (_| getName [€ N
- 2 sl TTTTTTTTS
b A 4 :'H addElement
\\"\ P T
‘\\\\ . . addTestSuite —> addTest I~
v N exceptionToString b = size
‘\ . . Ptog
A A8 ~, =
\ ~ . testCount i
. . ™
\ hS N
X
~ N, ! \\H H
nextElement hasMoreElements ! printStackTrace !

Figure 34
The Generated Class Call Graph For TestSuit Class

66

www.manaraa.com

Class Name: RepeatedTest

Class size:

of methods: 3.
of attributes:1.

countTestCases

v

run

shouldStop

LOCM : -1. .
REC: 4. toString :
WMC:48.
NOC:0.
Figure 35
The Generated Class Call Graph For RepeatedTest Class
fail
A
- 1
Class Name: TestSuit ! 4 newlnstance
............................ b
Class size: warning r', =1
................ 1 > getParameterTypes
of methods: 15. createTest - -
of attributes:2.
................ 7 getReturnType
isTestMethod |-["~
LOCM :125. "1~
RFC: 29. T " startsWith
WMC:759. isPublicTest
NOC0. isPublicTes -
Method =~3i isPublic
toString T
addTestMethod |[}--- contains
countTestCases .'(:| “'-.\. _____________
2 ~. . 0
‘\“\ v ’:* addElement
\\‘ -~ e
AN . . addTestSuite |—> addTest i
\‘ . | exceptionToString b, size
N Jy -7
A N, . "‘
\\ AN \ testCount [
Y “\ *
Yy hN \

nextElement

<4 printStackTrace

Figure 36

The Generated Class Call Graph For TestSuit Class

67

www.manaraa.com

Class Name: ProgressBar

Class size:
of methods: 10.
of attributes:4.

LOCM : 21.
RFC: 16.
WMC:170.
NOC:0.

¥ setColor
l"
4"’
paintStatus ‘\:\ drawLine
\\\"-.
AN "-._.A
"
T ™, fillRect
.\
paint \n
getBounds
reset L‘ /1
N /
4
’l
4
paintBackground »”
4
start P4
L
7
4
4
'/
scale [==sp---
/ e
setBounds E
step > paintStep > repaint

Figure 37

The Generated Class Call Graph For ProgressBar Class

Class Name: LoadingTestCollector

Class size:
of methods: 4.
of attributes:1.

LOCM : -6.
RFC: 9.
WMC:94.
NOC:0.

isTestClass

hasPublicConstructor |-

hasSuiteMethod j

i
~3 isAssignableFrom |
-

endsWith

"~y

isPublic

=, getMethod

) getTestConstructor

Figure 38

The Generated Class Call Graph For LoadingTestCollector Class

68

www.manaraa.com

Class Name: AboutDialog

createLogo [~o]
\ = getIconResource

Class size: \\

---------------- N e
of methods: 1. \.ii

of attributes:0. I JLabel

LOCM: -1.
RFC: 3.
WMC: 21.
NOC:0.

Figure 39
The Generated Class Call Graph For AboutDialog Class

Method Name: assertFalse

MecCabe's CC = 1.
Program length =33, START
Program vocabulary =6.

Volume= 30.27.
Difficulty= 1.67.
Program effort= 18.16.

[assertTrue(message, !condition)]

A 4
| END I

Figure 40
The Generated Method Control Flow Graph For assertFalse Method

69

www.manaraa.com

Method Name: fail
McCabe's CC= 1.
Program length =26. START
Program vocabulary =3.
Volume= 14.10.
Difficulty= 0.886.
Program effort= 16.45.

0

[throw new AssertionFailedError{message)]

END

Figure 41
The Generated Method Control Flow Graph For fail Method

Method Name: assertEquals

START

MecCabe’s CC = 3.
Program length =55.
Programvocabulary =14.
Velume= 80.94.
Difficulty= 3.4.

Program effort= 23.83. if (expected == null &%& actual == null)

I

[failNotEquals{message, expected, actual))

Figure 42
The Generated Method Control Flow Graph For assertEquals Method

70

www.manaraa.com

Method Mame: assertMotMull

MeCabe's CC= 1.

Program length =30. START
Programvocabulary=6.

Volume= 29.44.

Difficulty= 1.53.
Program effort= 19.25. h 4

[assertNotMull{null, object)]

h 4

=N

Figure 43
The Generated Method Control Flow Graph For assertNotNull
Method

Method Name: assertMull

MecCabe’s CC= 1.
Programlength =27. START
Programwvocabulary =6.
Volume= 28.53.

Difficulty= 1.6.
[assertTrue{message, object == null)]

Program effort= 17.83.
h
| END I
Figure 44

The Generated Method Control Flow Graph For assertNull Method

71

www.manaraa.com

Method Name: assertNotSame
McCabe's CC= 2.

Program length =23.
Programvocabulary =10.
Veolume= 45.24.

START

Difficulty= 2.3.
Program effort= 15.60. if (expected == actual)

N\

F

T

failSame(message)]

Figure 45
The Generated Method Control Flow Graph For assertSame Method

Program length =23.
Programvocabulary =10.
Volume= 45.24.

Method Name: assertNotSame
"""""""""""""""""""" START
McCabe'sCC= 2.

Difficulty=2.3.
Program effort= 15.60. if (expected == actual)

7\

F

T

failSame(message)]

Figure 46
The Generated Method Control Flow Graph For assertNotSame
Method

72

www.manaraa.com

Method Name: assertNotSame
"""""""""""""""""""" START
McCabe'sCC= 2.

Program length =23.
Programvocabulary =10.
Volume= 45.24.

Difficulty=2.3.
Program effort= 15.60. if (expected == actual)

7\

F

T

failSame(message)]

Figure 47
The Generated Method Control Flow Graph For assertNotSame
Method

Method Name: failNots
---? o ame al o ame E START
MeCabe’s CC = 2.

Program length =25.
Program vocabulary =15.

Volume=97.7. |
Difficulty= 2.2. | . —
Program effort= 44.4. [String formatted=]

[if (message != null))]

E S~

/ [formatted= message+" "]

[fail{formatted+"expected same:<"+expected+">was not:<"+actual+">")]

Figure 48
The Generated Method Control Flow Graph For failNotSame Method

73

www.manaraa.com

Appendix 2:
The Generated Descriptive Summary for Case Study 2

1 Class ClassGraphHackreport:

§ Class ClassGraphHack declarad in package doclet as Private. Has a super elass ClassGraph.

4 This class provide the following services:

5 The service is: prelogue. This service returns voicd.

6 This service use methods: PrintWriter.

Figure 49
The Generated Class Report for ClassGraphHack Class

; Class ContextMatcher report:
i Class ContextMatcher declared in package doclet as public.
5 This class provide the following services:
6
7 The service is: setContextCenter. This service returns void. The service uses local data:(pattern with
8 type Pattern). The servise use the attributes: (pattern with type Pattern, matched with type List)
9 This service use local method: addToGraph.
10 This service use methods: classes, matcher, and add.
11
12 The service is: addToGraph. This service returns void. The service uses local data:{cd with type
13 ClassDoc). The servise use the attributes: (visited with type Set, cg with type ClassGraphHack, and opt
1451 with type Options).
16 This service use methods: contains, add, printClass, printRelations, and printinferredRelations.
17
18 The service is: matches. This service returns boolean. The service uses local data:{ed with type
19 ClassDoc). The servise use the attributes: (opt with type Options, and matched with type List).
20 This service use local method: addToGraph.
21 This service use methods: matchesHideExpression, contains, and matches.
22
23 The service is: matches. This service returns boolean. The service uses local data:{name with type
24 String). The servise use the attributes: (pattern with type Pattern, matched with type List, with type
gz ClassGraphHack, and opt with type Options).

This service use methods: toString, matcher, matches, getClassinfo, getRelation, and matchesOne.

Figure 50
The Generated Class Report for ContextMatcher Class

Class DevNullWriter report:

Class DevMNullWriter declared in package doclet as Private. Has a super class Writer.
This class provide the following services:

type int, and Len with type int).

The service is: flush. This service returns void.

= O 00N N kW=

0 The service is: close. This service returns void.

The service is: write. This serviee returns void. This serviee use local data{cbuf with type char, off with

Figure 51
The Generated Class Report for DevNullWriter Class

74

www.manaraa.com

1 Class ContextView report:
g Class ContextView declared in package doclet as public.
1 This class provide the following services:
5 The service is: setContextCenter. This service returns void. The service uses local data :(contextCenter
6 with type ClassDoc). The servise use the attributes: (ed with type ClassDoc¢, myGlobalOptions with type
7 Options, and matcherwith type ContextMatcher)
3 This service use methods: containingPackage, setOption, and setContextCenter.
9 The service is: getDisplayMName. This service returns String. The servise use the attributes: (cd with
1(1) type ClassDoc).
12 The service is: getGlobalOptions. This service returns Options. The servise use the attributes: {
13 myGlobalOptions with type Options).
14 The service is: getOptionsFor. This service returns Options. The service uses local data:{cd with type
15 ClassDoc). The servise use the attributes: (globalOptions with type Options, hideOptions with type
16 Options, cd with type ClassDoc, centerOptions with type Options, and packageOptions with type
17 Options).
18 This service use local method: overrideForClass.
19 This service use methods: matchesHideExpression, equals, containingPackage, and clone.
20 The service is: getOptionsFor. This service returns Options. The service uses local data:{name with type
21 String). The servise use the attributes: (matched with type List, hideOptions with type Options, cd with
22 type ClassDoc, centerOptions with type Options, and globalOptions with type Options).
23 This service use local method: overrideForClass.
24 This service use methods: matches, name, equals, clone.
25
2 The service is: overrideForClass. This service returns void. The service uses local data :{opt with type
Options, and ed with type ClassDoc). The servise use the attributes: (matcher with type
27 ContextMatcher, HIDE_OPTIONS with type String, cd with type ClassDoc, and nodeFillColor).
28 This service use methods: setOptions, matchesHideExpression, setOption, and equals.
29
30 The service is: overrideForClass. This service returns void. The service uses local data :{opt with type
31 Options, and className with type String). The servise use the attributes: (matcher with type
32 ContextMatcher, and HIDE_OPTIONS with type String).
This service use methods: matches, and setOption.
Figure 52
The Generated Class Report for ContexView Class
1 Class RunDoc report:
§ Class RunDoc declared in package test as public.
2 This class provide the following services:
2 The service is: main. This service returns void. The service uses local data :{args with type String). The
7 servise use the attributes: (docFolder with type String, and sourcesFolder with type String).
8 This service use local method: runDoclet.
9 This service use methods: File, exists, and mkdirs.
}(1) The service is: runDoclet. This service returns String. The service uses local data :(options with type
12 String). The servise use the attributes: (pw with type PrintWriter).

This service use method: execute.

Figure 53
The Generated Class Report for RunDoclet Class

75

www.manaraa.com

1 Class TestUtils report:
2
3 Class TestUtils declared in package test as public.
4 This class provide the following services:
5
6 The service is: textFilesEquals. This service returns boolean. The service uses local data :(pw with type
7 PrintWriter, refTextFile with type File, and outTextFile with type File).
8 This service use local method: runDoclet.
9 This service use methods: println, BufferedReader, FileReader , refReader, readline, outReader,
10 startsWith, equals, close, and print.
11
12 The service is: dotFilesEqual. This service returns boolean. The service uses local data :(pw with type
13 PrintWriter, dotPath with type String, and refPath with type String).
14 This service use method: println, DotDiff, differ, graphEquals, printList, getExtralinesl, getExtralines2,
15 getNodesl, getNoces2, getAresl, and getAres2.
16
17 The service is: printlist. This service returns void. The service uses local data :{pw with type
18 PrintWriter, message with type String, and extraOut with type List).
19 This service use method: size, and printin.
20
21 The service is: cleanFolder. This service returns void. The service uses local data :(folder with type File,
22 and recurse withtype boolean).
23 This service use local method: cleanFolder.
24 This service use method: listFiles, isDirectory, getMame, equals, and delete.
Figure 54
The Generated Class Report for TestUtils Class
1 Class RunOne report:
2
3 Class RunOne declared in package test.
4 This class provide the following services:
Z The service is: main. This service returns void. The service uses local data :(args with type String). The
service use attribute: (testDestFolder with type String).
7 This service use local method: runSingleClass.
g This service use methods: File, exists, and mkdirs.
10 The service is: runView. This service returns void. The service uses local data :(viewClass with type
11 String). The service use attribute: (testDestFolder with type String).
12 This service use local method: runDoclet.
13
14 The service is: runSingleClass. This service returns void. The service uses local data :{className with
15 type String). The service use attributes: (testDestFolder with type String, and testSourceFolder with
16 type String).
17 This service use local method: runDoclet.
ig The service is: runDoclet. This service returns void. The service uses local data :(options with type
20 String). The service use attributes: {pw with type PrintWriter).

This service use method: execute.

Figure 55
The Generated Class Report for RunOne Class

76

www.manaraa.com

Class Shape report:

Class Shape declared in package doclet.
This class provide the following services:

The service is: graphvizAttribute. This service returns String.
This service use methods: equals.

(o BN e R N O R

The service is: landingPort. This service returns String
This service use methods: equals.

The service is: extraColumn. This service returns String . The service uses local data: (nRows with type
12 int).

13
14 The service is: cellBorder. This service returns String
15 This service use methods: equals.
Figure 56
The Generated Class Report for Shape Class
1 Class RelationPattern report:
2
3 Class RelationPattern declared in package doclet.
4 This class provide the following services:
5
g The service is: addRelation. This service returns void. The service uses local data: {defaultDirection
g with type RelationType, and direction with type RelationDirection).
9 This service use methods: ordinal, and sum.
10
11 The service is: matchesOne. This service returns void. The service uses local data: {relationPattern
12 with type RelationPattern).
13 This service use methods: contains.
Figure 57
The Generated Class Report for Class RelationPattern
| S —— (]
-3 add !
Class Name: ContextMatcher ___-"-" i._l:::::::::_
== e »! printClass
Class size: = [
-;;f“c:F_;-;\-;t-l;-c;:ls: 4, addToGraph =::: ----------- > printRelations i
of attributes:7. S i‘*, '
e nal 1
"""""""" T S~o L s-‘: printInferredRelations =
~o | 1
LOCM : -2. s"‘a i H
RFC: 9. setContextCenter |[~—_ contains =
WMC:116. it S H
NOC:0. -~ -'"*: toString
T Lo
ﬁl"‘ﬂl matcher
’—’ L

1
i 1
P o] getRelation H
-~ - ['
T
e [1
—’:—" __________)-: getClassInfo :
ez e 1 '
matches E] (oo 1
== 1 toString =
ST - | H
T~ Te—-—d.. - 1
S~ T . 1
.o contains 1
~—. | e H

e T
\-‘: matchesHideExpression
L

Figure 58
The Generated Class Call Graph for ContextMatcher Class

77

www.manaraa.com

Class Name: ClassGraphHack

Class size:

of methods: 1.
of attributes:1.

prologue F———
T==» PrintWriter
LOCM : 0.
RFC: 2.
WMC:15.
NOC:0.
Figure 59

The Generated Class Call Graph for ClassGraphHack Class

Class Name: DevNullWriter

Class size:
of methods: 3.
of attributes:0.

LOCM :-3.
RFC: 3.
WMC:31.
NOC:0.

Figure 60
The Generated Class Call Graph for DevNullWriter Class

78

www.manaraa.com

Class Name: ContextView

Class size:
of methods: 7.
of attributes:8.

LOCM :1.
RFC:15.
WMC:117.
NOC:0.

= containingPackage
I’
'f
”‘
’,' -7 setOption
L 4=
t"
setContextCenter [~
setContextCenter
_# matchesHideExpression
‘—"‘- I
;] oetoptionsF R~ i
~
getOptionsFor \:s..\-.,\“ o 1!
SN containingPackage I:
-~ 3
v \\\\‘\ }“ 1
I S K S :
. ~ ™ A clone
., ~] H
. 1. S 1
e S\ s\\ :
1 AN oy H
A ~ name 1
. 1
k\ \\ 1
ha ~ :
AN i
A equals N 1
\ 4 .] ~ !
1
— _ = |
! overrideForClass | - __l_-=- matches I
i — I
~
: :
~k . 1
I ‘\\ B setOption 1
1
: h -
1 N !
1 -
1 & setOptions :
H 1
: 4

Figure 61

The Generated Class Call Graph for ContexView Class

Class Name; RunDoc

of methods: 2.
of attributes:3.

LOCM : -6.
RFC: 5.
WMC:56.
NOC:0.

-
main TS m——
- .
NS e =3 File
-~
\\\ '\.‘\
~ S
-
\\‘ -~ -
~ ~ -
~, A exists
\\
S
.
~,
b -
AU mkdirs
L4
runDoclet [
~——
-
“"""'--...)
execute

Figure 62

The Generated Class Call Graph for RunDoc Class

79

www.manaraa.com

Class Name: TestUtils

of methods: 4.
of attributes:1.

LOCM : -6.
RFC: 9.
WMC:94.
NOC:0.

- -‘.‘-\-..
isTestClass :l ~d
~ “'\
~, -~
~
\\ \-4‘.‘
\\ |
N
~
ALY
~,

hasSuiteMethod })

hasPublicConstructor ko

=~k! getTestConstructor

"~ endsWith

et isAssignableFrom

B getMethod

Figure 63

The Generated Class Call Graph for TestUtils Class

Class Name: RunOne

of methods: 4.
of attributes:3.

LOCM :0.
RFC:7.
WMC:.
NOC:0.

= -
-
-~

main .. S~
~
. -
~
\\ S
~ ~,
o ~
-~
AN ~J
M
~
~,
N
A 4
\1

runSingleClass

runView

runDoclet [

==» File
W exists
AN e
"“ mkdirs
e

7 execute

Figure 64

The Generated Class Call Graph for RunOne Class

80

www.manaraa.com

Class Name: Shape
.......................... graphvizAttribute §
cl ize: N
-
\‘\
of methods: 4. "
of attributes:1. "\
................ landingPort s N
\\\ h- |
~
LOCM :6. '
RFC:5. N equals
WMC:60. e
NOC:0. extraColumn |~ /’7
J"
f”
I"’
e
cellBorder |~
Figure 65
The Generated Class Call Graph for Shape Class
Class Name: RelationPattern 1.7 ordinal
Class size: ol
................ addRelation
#of methods:2. | L JTTee-- -~ 3 sum
of attributes:1.
LOCM :-1.
RFC:4.
WMC:38. matchesOne » contains
NOC:0.
Figure 66

The Generated Class Call Graph for RelationPattern Class

81

www.manaraa.com

Method Name: main
""""""""""""""" START
MecCabe's CC = 2.

Program length =56.
Programvocabulary =26.
Volume=263.22.
Difficulty=26.83.

Program effort=9.81. [File outFolder = new File{testDestFolder);]

l

[if {loutFolder.exists())]

T
F

[runSingleClass("TestHiddenOp"); outFoIder mkdirs();

Figure 67
The Generated Method Control Flow Graph For main Method

Program vocabulary =26.
Volume= 211.52.
Difficulty= 14.93.
Program effort= 14.17.

Method Name: matchesOne i
MecCabe’s CC= 1. START
Program length =45.

i < directions.length

return false return true

Figure 68
The Generated Method Control Flow Graph For matchesOnes Method

82

www.manaraa.com

Method Name: addRelation

MeCabe'sCC= 1.
Programlength =58.
Programvocabulary=35.
Volume= 297.50. h 4

Difficulty= 14.25. - . .
Program effort= 20.88. int idx = relationType.ordinal();

[directions[idx] = directions[idx].sum(direction);]

!

START

Figure 69

The Generated Method Control Flow Graph For addRelation Method

Method Name:addToGraph

McCabe's CC= 4.
Program length =80.
Programvocabulary =26.
Volume=376.
Difficulty= 49.83.
Program effort=7.55.

START

[if (visited.contains{cd.toString()))]

F /
V—al
[wvisited.add(cd.toString())]

¥

[cg.printClass(cd, false)]

v

[cg.printRelations{cd)]
¥

[if (opt.inferRelationships)]
F / T
M=

[if ([opt.inferDependencies)]

-~

F | cg.printinferredDependencies(cd) H

=
>

T

[cg.printinferredRelations(cd)]

Figure 70

The Generated Method Control Flow Graph For addToGraph Method

83

www.manaraa.com

Metheod Name: runDoclet

MecCabe's CC= 1.

Programlength=25.

Programvocabulary =15.

Volume= 106.2. START
Difficulty= 13.13.

Programeffort=8.1.

[com.sun.tools.javadoc.Main.execute("UMLGraph test”, pw, pw, pw "org.umlgraph.doclet.UmIGraphDoc", options)]

l

Figure 71
The Generated Method Control Flow Graph For runDoclet Method

Method Mame: cleanFolder
McCabe's CC= 4. START
Programlength=81.

Pregramwvocabulary =31.
Volume=401.25.
Difficulty= 29.17.
Program effort= 13.76.

[(File f : folder.listFiles())]

h 4

[if {(f.isDirectory() && !f.getName().equals("CVs"})]

Figure 72
The Generated Method Control Flow Graph For cleanFolder Method

84

www.manaraa.com

Method Name: cellBorder
MeCabe's CC= 1.
Programlength =55.
Programvocabulary =19.

Volume= 233.64. START
Difficulty= 8.4.
Program effort= 27.81.

v

[return (name.equals("class") || name.equals("activeclass")) ? "1" : "0"]

END

Figure 73
The Generated Method Control Flow Graph For cellBorder Method

Method Name:graphvizAttribute
START
MecCabe'sCC= 7. i

Program length =113.
Programveocabulary =27. !
Volume= 537.30. j B B
Difficulty= 131 i [if [name.equals("class"))]

Program effort= 41.04. E / -
[if [name.equals{"note"))] return "]
F 7 =

[if (name.equals("node"))] return ", shape=note”

[lf (name.equals("component")) I i return ", shape=box3d"] ‘

[if [name.equals("package")) i return ", shape=component”]

[if ([name.equals("collaboration")) i return ”, shape=tab" \
[if [name.equals("usecase"”)) I return ”, shape=ellipse, style=dashed”

F T
[if ([name.equals("activeclass")) return ”, shape=ellipse”
/ -
return ") >
J

[return null

Figure 74
The Generated Method Control Flow Graph For graphvizAttribute
Method

85

www.manaraa.com

http://www.tcpdf.org

‘e o* inghialljl

& DARALMANDUMAH

Aipa s La Ll o cig B2 sy T

Automatic Generation of Descriptive Summary for Source Code Artifact Ulgusll

Wadlue solol «wglal

osaannndyl algoll

(WO yiao)doxo (sdlao dlo> ton> Gusléo

2016 NIV IF TR |

g0 :&990

1-86 1ol=aall

951089 :MD 8,

ol JSlw, ' Sgizall g9

English :axlll

> bo allw, 1auolell ax)all

&@ao asol> rasol=l

el wlwl)adl ésloc radsdl

ws,VI gl

Dissertations 10logleoll aclgd

ENWILTE TSV UICILVE Y SVIRIG FE S SW L UWATY. S ‘&aolgo
https://search.mandumah.com/Record/951089 ol

) ‘ cabgazo Jgixll gro .aoghinll > 2019 ©
plaziwlW 8slall 0ds dclb ol Juozi dhiSoy abbga=o ,uindl Jgi> grox Ol lode il si> Llol go g8sadl SVl (sle sy a>lio 85lodl 0in
_,|> 9|),ou| JQD wlxol o @b Cu i V9> (Es\Jg):LSJ\” _1,4).9J| 9| C.J),IJW 8§|9_o JI.o) Qng sl peiel)_ou| 9| Jnga.” 9| é.w.i.” &ioug Jnsd M».L”
oglaioll

www.manaraa.com

https://search.mandumah.com/Record/951089

2015

Mutah University
College of Graduate Studies

Automatic Generation of Descriptive Summary
for Source Code Artifact

Amani - Al-Btoush

By
Amani Abdel-Salam Al-Btoush

Supervisor:
Dr. Mustafa Hammad

A thesis Submitted to the College of Graduate Studies in
partial fulfillment of the requirements for the Master’s degree
in Computer science to the Department of Information
Technology, University of Mutah.

Automatic Generation of Descriptive Summary for Source Code Artifact

Mutah University, 2016

www.manaraa.com

http://www.tcpdf.org

